These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 10216860)

  • 1. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti.
    Geiger O; Röhrs V; Weissenmayer B; Finan TM; Thomas-Oates JE
    Mol Microbiol; 1999 Apr; 32(1):63-73. PubMed ID: 10216860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation.
    Zavaleta-Pastor M; Sohlenkamp C; Gao JL; Guan Z; Zaheer R; Finan TM; Raetz CR; López-Lara IM; Geiger O
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):302-7. PubMed ID: 20018679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth.
    López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O
    Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of phosphate assimilation in Rhizobium (Sinorhizobium) meliloti.
    Bardin SD; Finan TM
    Genetics; 1998 Apr; 148(4):1689-700. PubMed ID: 9560387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti.
    diCenzo GC; Sharthiya H; Nanda A; Zamani M; Finan TM
    J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28416708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phosphate-dependent regulator PhoB and the proteins ExpG and MucR.
    Rüberg S; Pühler A; Becker A
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():603-611. PubMed ID: 10217494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids.
    Gao JL; Weissenmayer B; Taylor AM; Thomas-Oates J; López-Lara IM; Geiger O
    Mol Microbiol; 2004 Sep; 53(6):1757-70. PubMed ID: 15341653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate starvation in fungi induces the replacement of phosphatidylcholine with the phosphorus-free betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine.
    Riekhof WR; Naik S; Bertrand H; Benning C; Voelker DR
    Eukaryot Cell; 2014 Jun; 13(6):749-57. PubMed ID: 24728191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti.
    Yuan ZC; Zaheer R; Finan TM
    J Bacteriol; 2006 Feb; 188(3):1089-102. PubMed ID: 16428413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens.
    Yuan ZC; Zaheer R; Finan TM
    Mol Microbiol; 2005 Nov; 58(3):877-94. PubMed ID: 16238634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PHO signaling pathway directs lipid remodeling in Cryptococcus neoformans via DGTS synthase to recycle phosphate during phosphate deficiency.
    Lev S; Rupasinghe T; Desmarini D; Kaufman-Francis K; Sorrell TC; Roessner U; Djordjevic JT
    PLoS One; 2019; 14(2):e0212651. PubMed ID: 30789965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Rhizobium (Sinorhizobium) meliloti high- and low-affinity phosphate uptake systems.
    Voegele RT; Bardin S; Finan TM
    J Bacteriol; 1997 Dec; 179(23):7226-32. PubMed ID: 9393684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A shotgun lipidomics approach in Sinorhizobium meliloti as a tool in functional genomics.
    Basconcillo LS; Zaheer R; Finan TM; McCarry BE
    J Lipid Res; 2009 Jun; 50(6):1120-32. PubMed ID: 19096048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011.
    Krol E; Becker A
    Mol Genet Genomics; 2004 Aug; 272(1):1-17. PubMed ID: 15221452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus.
    Lubin EA; Henry JT; Fiebig A; Crosson S; Laub MT
    J Bacteriol; 2016 Jan; 198(1):187-200. PubMed ID: 26483520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti.
    Bardin S; Dan S; Osteras M; Finan TM
    J Bacteriol; 1996 Aug; 178(15):4540-7. PubMed ID: 8755882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript and protein level analyses of the interactions among PhoB, PhoR, PhoU and CreC in response to phosphate starvation in Escherichia coli.
    Baek JH; Kang YJ; Lee SY
    FEMS Microbiol Lett; 2007 Dec; 277(2):254-9. PubMed ID: 18031348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diacylglyceryl-N,N,N-trimethylhomoserine-dependent lipid remodeling in a green alga, Chlorella kessleri.
    Oishi Y; Otaki R; Iijima Y; Kumagai E; Aoki M; Tsuzuki M; Fujiwara S; Sato N
    Commun Biol; 2022 Jan; 5(1):19. PubMed ID: 35017659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-tuning of galactoglucan biosynthesis in Sinorhizobium meliloti by differential WggR (ExpG)-, PhoB-, and MucR-dependent regulation of two promoters.
    Bahlawane C; Baumgarth B; Serrania J; Rüberg S; Becker A
    J Bacteriol; 2008 May; 190(10):3456-66. PubMed ID: 18344362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions.
    López-Lara IM; Sohlenkamp C; Geiger O
    Mol Plant Microbe Interact; 2003 Jul; 16(7):567-79. PubMed ID: 12848422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.