BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 10217505)

  • 1. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2.
    Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state.
    De Winde JH; Crauwels M; Hohmann S; Thevelein JM; Winderickx J
    Eur J Biochem; 1996 Oct; 241(2):633-43. PubMed ID: 8917466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression.
    Kraakman LS; Winderickx J; Thevelein JM; De Winde JH
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):159-68. PubMed ID: 10493925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression.
    Ma H; Botstein D
    Mol Cell Biol; 1986 Nov; 6(11):4046-52. PubMed ID: 3540605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression.
    Entian KD; Fröhlich KU
    J Bacteriol; 1984 Apr; 158(1):29-35. PubMed ID: 6370959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression.
    Walsh RB; Clifton D; Horak J; Fraenkel DG
    Genetics; 1991 Jul; 128(3):521-7. PubMed ID: 1874414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae.
    Ma H; Bloom LM; Walsh CT; Botstein D
    Mol Cell Biol; 1989 Dec; 9(12):5643-9. PubMed ID: 2685572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae.
    Rodríguez A; De La Cera T; Herrero P; Moreno F
    Biochem J; 2001 May; 355(Pt 3):625-31. PubMed ID: 11311123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII.
    Rose M; Albig W; Entian KD
    Eur J Biochem; 1991 Aug; 199(3):511-8. PubMed ID: 1868842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae.
    Herrero P; Martínez-Campa C; Moreno F
    FEBS Lett; 1998 Aug; 434(1-2):71-6. PubMed ID: 9738454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose.
    Dynesen J; Smits HP; Olsson L; Nielsen J
    Appl Microbiol Biotechnol; 1998 Nov; 50(5):579-82. PubMed ID: 9866176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII.
    Hohmann S; Neves MJ; de Koning W; Alijo R; Ramos J; Thevelein JM
    Curr Genet; 1993; 23(4):281-9. PubMed ID: 8467527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways.
    Belinchón MM; Gancedo JM
    FEMS Yeast Res; 2007 Sep; 7(6):808-18. PubMed ID: 17428308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis.
    Entian KD
    Mol Gen Genet; 1981; 184(2):278-82. PubMed ID: 7035837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling.
    Flipphi M; van de Vondervoort PJ; Ruijter GJ; Visser J; Arst HN; Felenbok B
    J Biol Chem; 2003 Apr; 278(14):11849-57. PubMed ID: 12519784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose repression in the yeast Saccharomyces cerevisiae.
    Trumbly RJ
    Mol Microbiol; 1992 Jan; 6(1):15-21. PubMed ID: 1310793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1.
    Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM
    Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and biochemical characterization of the hexokinase from the starch-utilizing yeast Schwanniomyces occidentalis.
    Rose M
    Curr Genet; 1995 Mar; 27(4):330-8. PubMed ID: 7614556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae Tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe.
    Bonini BM; Van Dijck P; Thevelein JM
    Biochim Biophys Acta; 2003 Sep; 1606(1-3):83-93. PubMed ID: 14507429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.