These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 10217505)
1. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505 [TBL] [Abstract][Full Text] [Related]
2. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. De Winde JH; Crauwels M; Hohmann S; Thevelein JM; Winderickx J Eur J Biochem; 1996 Oct; 241(2):633-43. PubMed ID: 8917466 [TBL] [Abstract][Full Text] [Related]
3. Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Kraakman LS; Winderickx J; Thevelein JM; De Winde JH Biochem J; 1999 Oct; 343 Pt 1(Pt 1):159-68. PubMed ID: 10493925 [TBL] [Abstract][Full Text] [Related]
4. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Ma H; Botstein D Mol Cell Biol; 1986 Nov; 6(11):4046-52. PubMed ID: 3540605 [TBL] [Abstract][Full Text] [Related]
5. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. Entian KD; Fröhlich KU J Bacteriol; 1984 Apr; 158(1):29-35. PubMed ID: 6370959 [TBL] [Abstract][Full Text] [Related]
7. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Ma H; Bloom LM; Walsh CT; Botstein D Mol Cell Biol; 1989 Dec; 9(12):5643-9. PubMed ID: 2685572 [TBL] [Abstract][Full Text] [Related]
8. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Rodríguez A; De La Cera T; Herrero P; Moreno F Biochem J; 2001 May; 355(Pt 3):625-31. PubMed ID: 11311123 [TBL] [Abstract][Full Text] [Related]
9. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Rose M; Albig W; Entian KD Eur J Biochem; 1991 Aug; 199(3):511-8. PubMed ID: 1868842 [TBL] [Abstract][Full Text] [Related]
10. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783 [TBL] [Abstract][Full Text] [Related]
11. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. Herrero P; Martínez-Campa C; Moreno F FEBS Lett; 1998 Aug; 434(1-2):71-6. PubMed ID: 9738454 [TBL] [Abstract][Full Text] [Related]
12. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Dynesen J; Smits HP; Olsson L; Nielsen J Appl Microbiol Biotechnol; 1998 Nov; 50(5):579-82. PubMed ID: 9866176 [TBL] [Abstract][Full Text] [Related]
13. The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Hohmann S; Neves MJ; de Koning W; Alijo R; Ramos J; Thevelein JM Curr Genet; 1993; 23(4):281-9. PubMed ID: 8467527 [TBL] [Abstract][Full Text] [Related]
14. Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways. Belinchón MM; Gancedo JM FEMS Yeast Res; 2007 Sep; 7(6):808-18. PubMed ID: 17428308 [TBL] [Abstract][Full Text] [Related]
15. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis. Entian KD Mol Gen Genet; 1981; 184(2):278-82. PubMed ID: 7035837 [TBL] [Abstract][Full Text] [Related]
16. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. Flipphi M; van de Vondervoort PJ; Ruijter GJ; Visser J; Arst HN; Felenbok B J Biol Chem; 2003 Apr; 278(14):11849-57. PubMed ID: 12519784 [TBL] [Abstract][Full Text] [Related]
18. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251 [TBL] [Abstract][Full Text] [Related]
19. Molecular and biochemical characterization of the hexokinase from the starch-utilizing yeast Schwanniomyces occidentalis. Rose M Curr Genet; 1995 Mar; 27(4):330-8. PubMed ID: 7614556 [TBL] [Abstract][Full Text] [Related]
20. Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae Tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Bonini BM; Van Dijck P; Thevelein JM Biochim Biophys Acta; 2003 Sep; 1606(1-3):83-93. PubMed ID: 14507429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]