BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 10217535)

  • 1. Mechanisms of melatonin-induced vasoconstriction in the rat tail artery: a paradigm of weak vasoconstriction.
    Lew MJ; Flanders S
    Br J Pharmacol; 1999 Mar; 126(6):1408-18. PubMed ID: 10217535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the vasoconstrictor action of melatonin and putative melatonin receptor ligands in the tail artery of juvenile Wistar rats.
    Ting KN; Dunn WR; Davies DJ; Sugden D; Delagrange P; Guardiola-Lemaître B; Scalbert E; Wilson VG
    Br J Pharmacol; 1997 Dec; 122(7):1299-306. PubMed ID: 9421275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasoconstrictor effects of various melatonin analogs on the rat tail artery in the presence of phenylephrine.
    Bucher B; Gauer F; Pévet P; Masson-Pévet M
    J Cardiovasc Pharmacol; 1999 Feb; 33(2):316-22. PubMed ID: 10028943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Membrane Depolarization Involved in α
    Ishida H; Saito SY; Dohi N; Ishikawa T
    Biol Pharm Bull; 2019; 42(10):1741-1745. PubMed ID: 31582662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melatonin directly constricts rat cerebral arteries through modulation of potassium channels.
    Geary GG; Krause DN; Duckles SP
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1530-6. PubMed ID: 9321846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of melatonin in the rat tail artery: role of K+ channels and endothelial factors.
    Geary GG; Duckles SP; Krause DN
    Br J Pharmacol; 1998 Apr; 123(8):1533-40. PubMed ID: 9605558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and pharmacological evidence for MT1 melatonin receptor subtype in the tail artery of juvenile Wistar rats.
    Ting KN; Blaylock NA; Sugden D; Delagrange P; Scalbert E; Wilson VG
    Br J Pharmacol; 1999 Jun; 127(4):987-95. PubMed ID: 10433507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-dependent rhythmic contractions induced by cyclopiazonic acid in rat mesenteric artery.
    Huang Y; Cheung KK
    Eur J Pharmacol; 1997 Aug; 332(2):167-72. PubMed ID: 9286618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.
    Fujiwara T; Angus JA
    Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetraethylammonium-evoked oscillatory contractions of rat tail artery: a K-K model.
    Wu L; Wang Z; Wang R
    Can J Physiol Pharmacol; 2000 Sep; 78(9):696-707. PubMed ID: 11007532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin receptors mediate potentiation of contractile responses to adrenergic nerve stimulation in rat caudal artery.
    Krause DN; Barrios VE; Duckles SP
    Eur J Pharmacol; 1995 Apr; 276(3):207-13. PubMed ID: 7601206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation.
    Miriel VA; Mauban JR; Blaustein MP; Wier WG
    J Physiol; 1999 Aug; 518 ( Pt 3)(Pt 3):815-24. PubMed ID: 10420017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of involvement of endothelin-1 in angiotensin II-induced contraction of the isolated rat tail artery.
    Jiang Y; Triggle CR
    Br J Pharmacol; 2000 Nov; 131(6):1055-64. PubMed ID: 11082111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of endothelium and K+ channels in dobutamine-induced relaxation in rat mesenteric artery.
    Huang Y; Kwok KH; Chan NW; Lau CW; Chen ZY
    Clin Exp Pharmacol Physiol; 1998 Jun; 25(6):405-11. PubMed ID: 9673814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of acidosis or alkalosis on the actions of nifedipine on excitation-contraction coupling in the rat tail artery.
    Achike FI; Mohamad R; Dai S; Ogle CW
    Clin Exp Pharmacol Physiol; 1997; 24(9-10):692-6. PubMed ID: 9315371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of melatonin on rat pial arteriolar diameter in vivo.
    Régrigny O; Delagrange P; Scalbert E; Lartaud-Idjouadiene I; Atkinson J; Chillon JM
    Br J Pharmacol; 1999 Aug; 127(7):1666-70. PubMed ID: 10455324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of vasopressin on the sympathetic contraction of rabbit ear artery during cooling.
    García-Villalón AL; Padilla J; Monge L; Fernández N; Sánchez MA; Gómez B; Diéguez G
    Br J Pharmacol; 1999 Feb; 126(3):785-93. PubMed ID: 10188992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms responsible for forskolin-induced relaxation of rat tail artery.
    Rembold CM; Chen XL
    Hypertension; 1998 Mar; 31(3):872-7. PubMed ID: 9495275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence od melatonin receptors antagonists, luzindole and 4-phenyl-2-propionamidotetralin (4-P-PDOT), on melatonin-dependent vasopressin and adrenocorticotropic hormone (ACTH) release from the rat hypothalamo-hypophysial system. In vitro and in vivo studies.
    Juszczak M; Roszczyk M; Kowalczyk E; Stempniak B
    J Physiol Pharmacol; 2014 Dec; 65(6):777-84. PubMed ID: 25554981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mg2+ blocks myogenic tone but not K+-induced constriction: role for SOCs in small arteries.
    Zhang J; Wier WG; Blaustein MP
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2692-705. PubMed ID: 12388301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.