BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 10218581)

  • 1. Imaging fluorescence resonance energy transfer between two green fluorescent proteins in living yeast.
    Sagot I; Bonneu M; Balguerie A; Aigle M
    FEBS Lett; 1999 Mar; 447(1):53-7. PubMed ID: 10218581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimolecular fluorescence complementation (BiFC) technique in yeast Saccharomyces cerevisiae and mammalian cells.
    Weber-Boyvat M; Li S; Skarp KP; Olkkonen VM; Yan D; Jäntti J
    Methods Mol Biol; 2015; 1270():277-88. PubMed ID: 25702124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of metabolites by using a fusion protein between a periplasmic binding protein and GFP derivatives: from a chimera to a view of reality.
    Stitt M
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9614-6. PubMed ID: 12119424
    [No Abstract]   [Full Text] [Related]  

  • 4. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein.
    Siegel RM; Chan FK; Zacharias DA; Swofford R; Holmes KL; Tsien RY; Lenardo MJ
    Sci STKE; 2000 Jun; 2000(38):pl1. PubMed ID: 11752595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo examination of membrane protein localization and degradation with green fluorescent protein.
    Hampton RY; Koning A; Wright R; Rine J
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):828-33. PubMed ID: 8570643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast.
    Niedenthal RK; Riles L; Johnston M; Hegemann JH
    Yeast; 1996 Jun; 12(8):773-86. PubMed ID: 8813764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging green fluorescent protein fusion proteins in Saccharomyces cerevisiae.
    Shaw SL; Yeh E; Bloom K; Salmon ED
    Curr Biol; 1997 Sep; 7(9):701-4. PubMed ID: 9285714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein.
    Miyawaki A; Tsien RY
    Methods Enzymol; 2000; 327():472-500. PubMed ID: 11045004
    [No Abstract]   [Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein.
    Mitra RD; Silva CM; Youvan DC
    Gene; 1996; 173(1 Spec No):13-7. PubMed ID: 8707050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring organelle turnover in yeast using fluorescent protein tags.
    Devenish RJ; Prescott M; Turcic K; Mijaljica D
    Methods Enzymol; 2008; 451():109-31. PubMed ID: 19185717
    [No Abstract]   [Full Text] [Related]  

  • 11. Mutations that suppress the thermosensitivity of green fluorescent protein.
    Siemering KR; Golbik R; Sever R; Haseloff J
    Curr Biol; 1996 Dec; 6(12):1653-63. PubMed ID: 8994830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel fluorescent marker for assembled mitochondria ATP synthase of yeast. OSCP subunit fused to green fluorescent protein is assembled into the complex in vivo.
    Prescott M; Lourbakos A; Bateson M; Boyle G; Nagley P; Devenish RJ
    FEBS Lett; 1997 Jul; 411(1):97-101. PubMed ID: 9247150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer.
    Mizuno H; Sawano A; Eli P; Hama H; Miyawaki A
    Biochemistry; 2001 Feb; 40(8):2502-10. PubMed ID: 11327872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral imaging fluorescence microscopy.
    Haraguchi T; Shimi T; Koujin T; Hashiguchi N; Hiraoka Y
    Genes Cells; 2002 Sep; 7(9):881-7. PubMed ID: 12296819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green fluorescent protein urea sensors. Uropathogenic Proteus mirabilis.
    Coker C; Zhao H; Mobley HL
    Methods Mol Biol; 2002; 183():287-93. PubMed ID: 12136763
    [No Abstract]   [Full Text] [Related]  

  • 16. Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography.
    Scharff-Poulsen P; Pedersen PA
    PLoS One; 2013; 8(10):e76851. PubMed ID: 24124599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins.
    Kohl T; Heinze KG; Kuhlemann R; Koltermann A; Schwille P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12161-6. PubMed ID: 12209012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins.
    Gautier I; Tramier M; Durieux C; Coppey J; Pansu RB; Nicolas JC; Kemnitz K; Coppey-Moisan M
    Biophys J; 2001 Jun; 80(6):3000-8. PubMed ID: 11371472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPLIFF: A Single-Cell Method to Map Protein-Protein Interactions in Time and Space.
    Dünkler A; Rösler R; Kestler HA; Moreno-Andrés D; Johnsson N
    Methods Mol Biol; 2015; 1346():151-68. PubMed ID: 26542721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an engineered yeast with glucose-inducible emission of green fluorescence from the cell surface.
    Ye K; Shibasaki S; Ueda M; Murai T; Kamasawa N; Osumi M; Shimizu K; Tanaka A
    Appl Microbiol Biotechnol; 2000 Jul; 54(1):90-6. PubMed ID: 10952010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.