BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10218897)

  • 41. Kinetic evidence for two separate trans-2-enoyl CoA reductases in rat hepatic microsomes: NADPH-specific short chain- and NAD(P)H-dependent long chain-reductase.
    Prasad MR; Nagi MN; Cook L; Cinti DL
    Biochem Biophys Res Commun; 1983 Jun; 113(2):659-65. PubMed ID: 6870879
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hepatic subcellular distribution of short-chain beta-ketoacyl coenzyme A reductase and trans-2-enoyl coenzyme A hydratase: 25- to 50-fold stimulation of microsomal activities by the peroxisome proliferator, di-(2-ethylhexyl)phthalate.
    Cook L; Nagi MN; Piscatelli J; Joseph T; Prasad MR; Ghesquier D; Cinti DL
    Arch Biochem Biophys; 1986 Feb; 245(1):24-36. PubMed ID: 3511853
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of the fatty acid oxidation complex in acetyl-CoA-dependent chain elongation of fatty acids in Escherichia coli.
    Nishimaki-Mogami T; Yamanaka H; Mizugaki M
    J Biochem; 1987 Aug; 102(2):427-32. PubMed ID: 3312186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The activity of 3-hydroxyacyl-CoA epimerase is insufficient to account for the rate of linoleate oxidation in rat heart mitochondria. Evidence for a modified pathway of linoleate degradation.
    Chu CH; Kushner L; Cuebas D; Schulz H
    Biochem Biophys Res Commun; 1984 Jan; 118(1):162-7. PubMed ID: 6696754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. beta-Hydroxyacyl-coa dehydrase from rat liver microsomes.
    Bernert JT; Sprecher H
    Methods Enzymol; 1981; 71 Pt C():247-52. PubMed ID: 7278656
    [No Abstract]   [Full Text] [Related]  

  • 46. Comparative inhibition studies of enoyl-CoA hydratase 1 and enoyl-CoA hydratase 2 in long-chain fatty acid oxidation.
    Wu L; Lin S; Li D
    Org Lett; 2008 Aug; 10(15):3355-8. PubMed ID: 18611036
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Induction of rat liver mitochondrial fatty acid elongation by the administration of peroxisome proliferator di-(2-ethylhexyl)phthalate: absence of elongation activity in peroxisomes.
    Nagi MN; Cook L; Ghesquier D; Cinti DL
    Arch Biochem Biophys; 1986 Jul; 248(1):408-18. PubMed ID: 3729425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of enoyl-CoA hydratase by long-chain L-3-hydroxyacyl-CoA and its possible effect on fatty acid oxidation.
    He XY; Yang SY; Schulz H
    Arch Biochem Biophys; 1992 Nov; 298(2):527-31. PubMed ID: 1416981
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrogen transfer by NADPH-dependent reductases in elongation of very-long-chain saturated and polyunsaturated fatty-acyl-CoA in swine cerebral microsomes.
    Yoshida S; Saitoh T; Takeshita M
    Biochim Biophys Acta; 1988 Feb; 958(3):361-7. PubMed ID: 3342246
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microsomal electron-transport reductase activities and fatty acid elongation in rat brain. Developmental changes, regional distribution and comparison with liver activity.
    Takeshita M; Tamura M; Yubisui T
    Biochem J; 1983 Sep; 214(3):751-6. PubMed ID: 6626155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms.
    Smeland TE; Nada M; Cuebas D; Schulz H
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6673-7. PubMed ID: 1495956
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and characterization of 2-enoyl-CoA reductase from bovine liver.
    Cvetanović M; Moreno de la Garza M; Dommes V; Kunau WH
    Biochem J; 1985 Apr; 227(1):49-56. PubMed ID: 3994691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation, purification, and characterization of a peptide that contains the beta-ketoacyl reductase, enoyl reductase, and beta-hydroxyacyl dehydrase activities of the pigeon liver fatty acid synthetase.
    Puri RN; Porter JW
    Can J Biochem Cell Biol; 1985 Jan; 63(1):50-6. PubMed ID: 3886103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Palmityl-CoA and stearyl-CoA desaturase in mouse brain microsomes during development in normal and neurological mutants (Quaking and Jimpy).
    Carreau JP; Daudu O; Mazliak P; Bourre JM
    J Neurochem; 1979 Feb; 32(2):659-60. PubMed ID: 33235
    [No Abstract]   [Full Text] [Related]  

  • 55. Effect of the peroxisomal proliferator di(2-ethylhexyl)phthalate on component reactions of the rat hepatic microsomal fatty acid chain elongation system and on other hepatic lipogenic enzymes.
    Prasad MR; Cinti DL
    Arch Biochem Biophys; 1986 Aug; 248(2):479-88. PubMed ID: 3527064
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Existence of acetyl-CoA-dependent chain elongation system in hepatic peroxisomes of rat: effects of clofibrate and di-(2-ethylhexyl)phthalate on the activity.
    Horie S; Suzuki T; Suga T
    Arch Biochem Biophys; 1989 Oct; 274(1):64-73. PubMed ID: 2774583
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the mechanism of stimulation of peroxisomal beta-oxidation in rat heart by partially hydrogenated fish oil.
    Kvannes J; Eikhom TS; Flatmark T
    Biochim Biophys Acta; 1995 Mar; 1255(1):39-49. PubMed ID: 7893736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new inhibitor of mitochondrial fatty acid oxidation.
    Hashimoto T; Shindo Y; Souri M; Baldwin GS
    J Biochem; 1996 Jun; 119(6):1196-201. PubMed ID: 8827458
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Studies on the stearic acid dehydrogenase in the liver and brain of rats of various ages (author's transl)].
    Seng PN; Debuch H
    Hoppe Seylers Z Physiol Chem; 1975 Jun; 356(6):1043-54. PubMed ID: 241688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intrinsic crotonase activity in a bacterial butyryl-CoA dehydrogenase.
    Ellison PA; Engel PC
    Biochem Mol Biol Int; 1993 Mar; 29(4):605-12. PubMed ID: 8490573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.