These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 10219127)
1. The influence of cortical perforations and of space filling with peripheral blood on the kinetics of guided bone generation. A comparative histometric study in the rat. Rompen EH; Biewer R; Vanheusden A; Zahedi S; Nusgens B Clin Oral Implants Res; 1999 Apr; 10(2):85-94. PubMed ID: 10219127 [TBL] [Abstract][Full Text] [Related]
2. Impact of cortical perforations of contiguous donor bone in a guided bone augmentation procedure: an experimental study in the rabbit skull. Slotte C; Lundgren D Clin Implant Dent Relat Res; 2002; 4(1):1-10. PubMed ID: 11938632 [TBL] [Abstract][Full Text] [Related]
3. Influence of barrier occlusiveness on guided bone augmentation. An experimental study in the rat. Lundgren A; Lundgren D; Taylor A Clin Oral Implants Res; 1998 Aug; 9(4):251-60. PubMed ID: 9760900 [TBL] [Abstract][Full Text] [Related]
4. Augmentation of intramembraneous bone beyond the skeletal envelope using an occlusive titanium barrier. An experimental study in the rabbit. Lundgren D; Lundgren AK; Sennerby L; Nyman S Clin Oral Implants Res; 1995 Jun; 6(2):67-72. PubMed ID: 7578783 [TBL] [Abstract][Full Text] [Related]
5. Augmentation of calvarial tissue using non-permeable silicone domes and bovine bone mineral. An experimental study in the rat. Slotte C; Lundgren D Clin Oral Implants Res; 1999 Dec; 10(6):468-76. PubMed ID: 10740456 [TBL] [Abstract][Full Text] [Related]
6. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits. Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669 [TBL] [Abstract][Full Text] [Related]
7. Effects of occlusiveness of a titanium cap on bone generation beyond the skeletal envelope in the rabbit calvarium. Yamada Y; Nanba K; Ito K Clin Oral Implants Res; 2003 Aug; 14(4):455-63. PubMed ID: 12869008 [TBL] [Abstract][Full Text] [Related]
8. The influence of cortical perforation on guided bone regeneration using synthetic bone substitutes: a study of rabbit cranial defects. Lee SH; Lim P; Yoon HJ Int J Oral Maxillofac Implants; 2014; 29(2):464-71. PubMed ID: 24683575 [TBL] [Abstract][Full Text] [Related]
10. A comparative study of microfocus CT and histomorphometry in the evaluation of bone augmentation in rat calvarium. Kochi G; Sato S; Ebihara H; Hirano J; Arai Y; Ito K J Oral Sci; 2010 Jun; 52(2):203-11. PubMed ID: 20587943 [TBL] [Abstract][Full Text] [Related]
11. The biological effect of natural bone mineral on bone neoformation on the rabbit skull. Hämmerle CH; Olah AJ; Schmid J; Flückiger L; Gogolewski S; Winkler JR; Lang NP Clin Oral Implants Res; 1997 Jun; 8(3):198-207. PubMed ID: 9586464 [TBL] [Abstract][Full Text] [Related]
12. Placement of autogeneic bone chips or bovine bone mineral in guided bone augmentation: a rabbit skull study. Slotte C; Lundgren D; Burgos PM Int J Oral Maxillofac Implants; 2003; 18(6):795-806. PubMed ID: 14696654 [TBL] [Abstract][Full Text] [Related]
13. Effect of autologous platelet-rich plasma in combination with bovine porous bone mineral and bio-guide membrane on bone regeneration in mandible bicortical bony defects. Chen TL; Lu HJ; Liu GQ; Tang DH; Zhang XH; Pan ZL; Wang SF; Zhang QF J Craniofac Surg; 2014 Jan; 25(1):215-23. PubMed ID: 24406581 [TBL] [Abstract][Full Text] [Related]
14. Effect of a collagen membrane combined with a porous titanium membrane on exophytic new bone formation in a rabbit calvarial model. Shin SI; Herr Y; Kwon YH; Chung JH J Periodontol; 2013 Jan; 84(1):110-6. PubMed ID: 22509754 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Guided Bone Regeneration Between Surface-Modified and Pristine Titanium Membranes in a Rat Calvarial Model. Nguyen TD; Moon SH; Oh TJ; Seok JJ; Lee MH; Bae TS Int J Oral Maxillofac Implants; 2016; 31(3):581-90. PubMed ID: 27183067 [TBL] [Abstract][Full Text] [Related]
16. Use of a collagen membrane loaded with recombinant human bone morphogenetic protein-2 with collagen-binding domain for vertical guided bone regeneration. Lai CH; Zhou L; Wang ZL; Lu HB; Gao Y J Periodontol; 2013 Jul; 84(7):950-7. PubMed ID: 23088529 [TBL] [Abstract][Full Text] [Related]
17. Comparison of pericranium and eggshell as space fillers used in combination with guided bone regeneration: an experimental study. Dupoirieux L; Neves M; Pourquier D J Oral Maxillofac Surg; 2000 Jan; 58(1):40-6; discussion 47-8. PubMed ID: 10632164 [TBL] [Abstract][Full Text] [Related]
18. The effect of diabetes on bone formation following application of the GBR principle with the use of titanium domes. Lee SB; Retzepi M; Petrie A; Hakimi AR; Schwarz F; Donos N Clin Oral Implants Res; 2013 Jan; 24(1):28-35. PubMed ID: 22432522 [TBL] [Abstract][Full Text] [Related]
19. Vertical ridge augmentation with guided bone regeneration in association with dental implants: an experimental study in dogs. Simion M; Dahlin C; Rocchietta I; Stavropoulos A; Sanchez R; Karring T Clin Oral Implants Res; 2007 Feb; 18(1):86-94. PubMed ID: 17224028 [TBL] [Abstract][Full Text] [Related]
20. Blood-filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes. Schmid J; Hämmerle CH; Flückiger L; Winkler JR; Olah AJ; Gogolewski S; Lang NP Clin Oral Implants Res; 1997 Apr; 8(2):75-81. PubMed ID: 9758957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]