These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10219529)

  • 1. Effects of process variables on the size, shape, and surface characteristics of microcrystalline cellulose beads prepared in a centrifugal granulator.
    Rashid HA; Heinämäki J; Antikainen O; Yliruusi J
    Drug Dev Ind Pharm; 1999 May; 25(5):605-11. PubMed ID: 10219529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the centrifugal granulating process on the properties of layered pellets.
    Rashid HA; Heinämäki J; Antikainen O; Yliruusi J
    Eur J Pharm Biopharm; 2001 May; 51(3):227-34. PubMed ID: 11343887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Optimatization of pellet preparation is CF-granulator with factorial design].
    Beretzky A; Antal I; Karsai J; Eros I; Hódi K
    Acta Pharm Hung; 2008; 78(1):37-43. PubMed ID: 18476367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and simultaneous optimization of some pellets characteristics using a 3(3) factorial design and the desirability function.
    Paterakis PG; Korakianiti ES; Dallas PP; Rekkas DM
    Int J Pharm; 2002 Nov; 248(1-2):51-60. PubMed ID: 12429459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extruded and spheronized beads containing no microcrystalline cellulose: influence of formulation and process variables.
    Agrawal AM; Howard MA; Neau SH
    Pharm Dev Technol; 2004; 9(2):197-217. PubMed ID: 15202579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preparation of Shuxiong micropellets by centrifugal granulation technology].
    Song HT; Zhang Q; Kong LL; Chen DW; He ZG
    Zhongguo Zhong Yao Za Zhi; 2006 Jul; 31(14):1147-50. PubMed ID: 17048580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of coarse ethylcellulose and PEO in beads produced by extrusion-spheronization.
    Mallipeddi R; Saripella KK; Neau SH
    Int J Pharm; 2010 Jan; 385(1-2):53-65. PubMed ID: 19853027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the pelletization process in a fluid-bed rotor granulator using experimental design.
    Korakianiti ES; Rekkas DM; Dallas PP; Choulis NH
    AAPS PharmSciTech; 2000 Dec; 1(4):E35. PubMed ID: 14727900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and scale-up of a fluid bed tangential spray rotogranulation process.
    Bouffard J; Dumont H; Bertrand F; Legros R
    Int J Pharm; 2007 Apr; 335(1-2):54-62. PubMed ID: 17166677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal conditions to prepare fine globular granules with a multi-functional rotor processor.
    Kimura S; Iwao Y; Ishida M; Uchimoto T; Miyagishima A; Sonobe T; Itai S
    Int J Pharm; 2010 May; 391(1-2):244-7. PubMed ID: 20214963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility studies in spheronization and scale-up of ibuprofen microparticulates using the rotor disk fluid-bed technology.
    Chukwumezie BN; Wojcik M; Malak P; Adeyeye MC
    AAPS PharmSciTech; 2002; 3(1):E2. PubMed ID: 12916955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melt-in-Mouth Multi-particulate System for the Treatment of ADHD: A Convenient Platform for Pediatric Use.
    Patadia J; Tripathi R; Joshi A
    AAPS PharmSciTech; 2016 Aug; 17(4):878-90. PubMed ID: 26392403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spray layering of human immunoglobulin G: Optimization of formulation and process parameters.
    Jiang B; Yu D; Zhang Y; Yu H; Feng H; Hoag SW
    Int J Pharm; 2021 Dec; 610():121238. PubMed ID: 34748814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.
    Sakwanichol J; Puttipipatkhachorn S; Ingenerf G; Kleinebudde P
    Pharm Dev Technol; 2012; 17(1):30-9. PubMed ID: 20731538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of spray nozzle aperture during high shear wet granulation on granule properties and its compression attributes.
    Veronica N; Goh HP; Kang CYX; Liew CV; Heng PWS
    Int J Pharm; 2018 Dec; 553(1-2):474-482. PubMed ID: 30385375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles.
    Amin MC; Abadi AG; Katas H
    Carbohydr Polym; 2014 Jan; 99():180-9. PubMed ID: 24274495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A priori performance prediction in pharmaceutical wet granulation: testing the applicability of the nucleation regime map to a formulation with a broad size distribution and dry binder addition.
    Kayrak-Talay D; Litster JD
    Int J Pharm; 2011 Oct; 418(2):254-64. PubMed ID: 21530625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of inert cushioning beads: effect of excipients on the physicomechanical properties of freeze-dried beads containing microcrystalline cellulose produced by extrusion-spheronization.
    Habib YS; Augsburger LL; Shangraw RF
    Int J Pharm; 2002 Feb; 233(1-2):67-83. PubMed ID: 11897412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the effects of the physical characteristics of microcrystalline cellulose on performance in extrusion spheronization.
    Heng PW; Koo OM
    Pharm Res; 2001 Apr; 18(4):480-7. PubMed ID: 11451035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.