These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10220131)

  • 21. Actigraphic assessment of sleep/wake behavior in central disorders of hypersomnolence.
    Filardi M; Pizza F; Martoni M; Vandi S; Plazzi G; Natale V
    Sleep Med; 2015 Jan; 16(1):126-30. PubMed ID: 25547035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of bed firmness on sleep quality.
    Bader GG; Engdal S
    Appl Ergon; 2000 Oct; 31(5):487-97. PubMed ID: 11059462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and validation of an algorithm for the study of sleep using a biometric shirt in young healthy adults.
    Pion-Massicotte J; Godbout R; Savard P; Roy JF
    J Sleep Res; 2019 Apr; 28(2):e12667. PubMed ID: 29473243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Body movements of the elderly during sleep and thermal conditions in bedrooms in summer.
    Ohnaka T; Tochihara Y; Kanda K
    Appl Human Sci; 1995 Mar; 14(2):89-93. PubMed ID: 7749989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography.
    Tal A; Shinar Z; Shaki D; Codish S; Goldbart A
    J Clin Sleep Med; 2017 Mar; 13(3):517-522. PubMed ID: 27998378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wearable Monitoring of Physical Functioning and Disability Changes, Circadian Rhythms and Sleep Patterns in Nursing Home Residents.
    Merilahti J; Viramo P; Korhonen I
    IEEE J Biomed Health Inform; 2016 May; 20(3):856-864. PubMed ID: 25861091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing sleep quality using self-report and actigraphy in PTSD.
    Slightam C; Petrowski K; Jamison AL; Keller M; Bertram F; Kim S; Roth WT
    J Sleep Res; 2018 Jun; 27(3):e12632. PubMed ID: 29171107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of truss mattress upon sleep and bed climate.
    Okamoto K; Nakabayashi K; Mizuno K; Okudaira N
    Appl Human Sci; 1998 Nov; 17(6):233-7. PubMed ID: 10052220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and Evaluation of a Wearable Device for Sleep Quality Assessment.
    Kuo CE; Liu YC; Chang DW; Young CP; Shaw FZ; Liang SF
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1547-1557. PubMed ID: 28113301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting Disordered Breathing and Limb Movement Using In-Bed Force Sensors.
    Waltisberg D; Amft O; Brunner DP; Troster G
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):930-938. PubMed ID: 27076472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Factors associated with objective (actigraphic) and subjective sleep quality in young adult women.
    Tworoger SS; Davis S; Vitiello MV; Lentz MJ; McTiernan A
    J Psychosom Res; 2005 Jul; 59(1):11-9. PubMed ID: 16126091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How accurately does wrist actigraphy identify the states of sleep and wakefulness?
    Pollak CP; Tryon WW; Nagaraja H; Dzwonczyk R
    Sleep; 2001 Dec; 24(8):957-65. PubMed ID: 11766166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing sleep architecture and continuity measures through the analysis of heart rate and wrist movement recordings in healthy subjects: comparison with results based on polysomnography.
    Muzet A; Werner S; Fuchs G; Roth T; Saoud JB; Viola AU; Schaffhauser JY; Luthringer R
    Sleep Med; 2016 May; 21():47-56. PubMed ID: 27448472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea.
    Pallin M; O'Hare E; Zaffaroni A; Boyle P; Fagan C; Kent B; Heneghan C; de Chazal P; McNicholas WT
    J Sleep Res; 2014 Aug; 23(4):475-84. PubMed ID: 24495222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of movement in bed using unobtrusive load cell sensors.
    Adami AM; Pavel M; Hayes TL; Singer CM
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):481-90. PubMed ID: 19171523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Objectively measured night-to-night sleep variations are associated with body composition in very elderly women.
    Kim M; Sasai H; Kojima N; Kim H
    J Sleep Res; 2015 Dec; 24(6):639-47. PubMed ID: 26250860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliability of sleep log data versus actigraphy in veterans with sleep disturbance and PTSD.
    Westermeyer J; Sutherland RJ; Freerks M; Martin K; Thuras P; Johnson D; Rossom R; Hurwitz T
    J Anxiety Disord; 2007; 21(7):966-75. PubMed ID: 17291714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of ambulatory and polysomnographic recording of jaw muscle activity during sleep in normal subjects.
    Yamaguchi T; Abe S; Rompré PH; Manzini C; Lavigne GJ
    J Oral Rehabil; 2012 Jan; 39(1):2-10. PubMed ID: 21707698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer scoring of motility patterns for states of sleep and wakefulness: human infants.
    Thoman EB; Glazier RC
    Sleep; 1987 Apr; 10(2):122-9. PubMed ID: 3589325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The first-hour-of-the-day sleep EEG reliably identifies interictal epileptiform discharges during long-term video-EEG monitoring.
    Liu X; Issa NP; Rose S; Wu S; Sun T; Towle LV; Warnke PC; Tao JX
    Seizure; 2018 Dec; 63():48-51. PubMed ID: 30399461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.