These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 10220345)
1. An ATP-linked structural change in protein kinase A precedes phosphoryl transfer under physiological magnesium concentrations. Shaffer J; Adams JA Biochemistry; 1999 Apr; 38(17):5572-81. PubMed ID: 10220345 [TBL] [Abstract][Full Text] [Related]
2. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy. Lew J; Taylor SS; Adams JA Biochemistry; 1997 Jun; 36(22):6717-24. PubMed ID: 9184152 [TBL] [Abstract][Full Text] [Related]
3. Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques. Grant BD; Adams JA Biochemistry; 1996 Feb; 35(6):2022-9. PubMed ID: 8639687 [TBL] [Abstract][Full Text] [Related]
4. Participation of ADP dissociation in the rate-determining step in cAMP-dependent protein kinase. Zhou J; Adams JA Biochemistry; 1997 Dec; 36(50):15733-8. PubMed ID: 9398302 [TBL] [Abstract][Full Text] [Related]
5. Is there a catalytic base in the active site of cAMP-dependent protein kinase? Zhou J; Adams JA Biochemistry; 1997 Mar; 36(10):2977-84. PubMed ID: 9062128 [TBL] [Abstract][Full Text] [Related]
6. Detection of conformational changes along the kinetic pathway of protein kinase A using a catalytic trapping technique. Shaffer J; Adams JA Biochemistry; 1999 Sep; 38(37):12072-9. PubMed ID: 10508411 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2. Wu H; Zheng Y; Wang ZX Biochemistry; 2003 Feb; 42(4):1129-39. PubMed ID: 12549935 [TBL] [Abstract][Full Text] [Related]
8. Kinetic mechanism and rate-limiting steps of focal adhesion kinase-1. Schneck JL; Briand J; Chen S; Lehr R; McDevitt P; Zhao B; Smallwood A; Concha N; Oza K; Kirkpatrick R; Yan K; Villa JP; Meek TD; Thrall SH Biochemistry; 2010 Aug; 49(33):7151-63. PubMed ID: 20597513 [TBL] [Abstract][Full Text] [Related]
9. Two rate-limiting steps in the kinetic mechanism of the serine/threonine specific protein kinase ERK2: a case of fast phosphorylation followed by fast product release. Waas WF; Rainey MA; Szafranska AE; Dalby KN Biochemistry; 2003 Oct; 42(42):12273-86. PubMed ID: 14567689 [TBL] [Abstract][Full Text] [Related]
10. Phosphoryl transfer is not rate-limiting for the ROCK I-catalyzed kinase reaction. Futer O; Saadat AR; Doran JD; Raybuck SA; Pazhanisamy S Biochemistry; 2006 Jun; 45(25):7913-23. PubMed ID: 16784244 [TBL] [Abstract][Full Text] [Related]
11. Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase. Grant BD; Hemmer W; Tsigelny I; Adams JA; Taylor SS Biochemistry; 1998 May; 37(21):7708-15. PubMed ID: 9601030 [TBL] [Abstract][Full Text] [Related]
12. Kinetic analysis of inhibition of cAMP-dependent protein kinase catalytic subunit by the peptide-nucleoside conjugate AdcAhxArg6. Kuznetsov A; Uri A; Raidaru G; Järv J Bioorg Chem; 2004 Dec; 32(6):527-35. PubMed ID: 15530993 [TBL] [Abstract][Full Text] [Related]
13. A second magnesium ion is critical for ATP binding in the kinase domain of the oncoprotein v-Fps. Saylor P; Wang C; Hirai TJ; Adams JA Biochemistry; 1998 Sep; 37(36):12624-30. PubMed ID: 9730835 [TBL] [Abstract][Full Text] [Related]
14. Multiple-step kinetic mechanism of DNA-independent ATP binding and hydrolysis by Escherichia coli replicative helicase DnaB protein: quantitative analysis using the rapid quench-flow method. Rajendran S; Jezewska MJ; Bujalowski W J Mol Biol; 2000 Nov; 303(5):773-95. PubMed ID: 11061975 [TBL] [Abstract][Full Text] [Related]
15. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase. Adams JA; Taylor SS Protein Sci; 1993 Dec; 2(12):2177-86. PubMed ID: 8298463 [TBL] [Abstract][Full Text] [Related]
16. Divalent ion effects and insights into the catalytic mechanism of protein tyrosine kinase Csk. Grace MR; Walsh CT; Cole PA Biochemistry; 1997 Feb; 36(7):1874-81. PubMed ID: 9048573 [TBL] [Abstract][Full Text] [Related]
17. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M; Kawai R; Adams JA; Weare JH J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447 [TBL] [Abstract][Full Text] [Related]
18. Rate-determining steps for tyrosine phosphorylation by the kinase domain of v-fps. Wang C; Lee TR; Lawrence DS; Adams JA Biochemistry; 1996 Feb; 35(5):1533-9. PubMed ID: 8634284 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation of the sodium--potassium adenosinetriphosphatase proceeds through a rate-limiting conformational change followed by rapid phosphoryl transfer. Keillor JW; Jencks WP Biochemistry; 1996 Feb; 35(8):2750-3. PubMed ID: 8611581 [TBL] [Abstract][Full Text] [Related]
20. Nucleotide release and associated conformational changes regulate function in the COOH-terminal Src kinase, Csk. Shaffer J; Sun G; Adams JA Biochemistry; 2001 Sep; 40(37):11149-55. PubMed ID: 11551213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]