BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 10221986)

  • 21. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding.
    Buchberger A; Schröder H; Hesterkamp T; Schönfeld HJ; Bukau B
    J Mol Biol; 1996 Aug; 261(3):328-33. PubMed ID: 8780775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat shock proteins in protein folding and membrane translocation.
    Hartl FU
    Semin Immunol; 1991 Jan; 3(1):5-16. PubMed ID: 1680013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea.
    Macario AJ; Malz M; Conway de Macario E
    Front Biosci; 2004 May; 9():1318-32. PubMed ID: 14977547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding.
    Langer T; Lu C; Echols H; Flanagan J; Hayer MK; Hartl FU
    Nature; 1992 Apr; 356(6371):683-9. PubMed ID: 1349157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of molecular chaperones to protein folding in the cytoplasm of prokaryotic and eukaryotic cells.
    Naylor DJ; Hartl FU
    Biochem Soc Symp; 2001; (68):45-68. PubMed ID: 11573347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular chaperones in the cytosol: from nascent chain to folded protein.
    Hartl FU; Hayer-Hartl M
    Science; 2002 Mar; 295(5561):1852-8. PubMed ID: 11884745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes.
    Finka A; Mattoo RU; Goloubinoff P
    Annu Rev Biochem; 2016 Jun; 85():715-42. PubMed ID: 27050154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time single-molecule observation of chaperone-assisted protein folding.
    Marzano NR; Paudel BP; van Oijen AM; Ecroyd H
    Sci Adv; 2022 Dec; 8(50):eadd0922. PubMed ID: 36516244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Group II chaperonins as mediators of cytosolic protein folding.
    Martin J
    Curr Protein Pept Sci; 2000 Nov; 1(3):309-24. PubMed ID: 12369912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli.
    Kyratsous CA; Panagiotidis CA
    Methods Mol Biol; 2012; 824():109-29. PubMed ID: 22160895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system.
    Pierpaoli EV; Sandmeier E; Baici A; Schönfeld HJ; Gisler S; Christen P
    J Mol Biol; 1997 Jun; 269(5):757-68. PubMed ID: 9223639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes.
    Alderson TR; Kim JH; Markley JL
    Structure; 2016 Jul; 24(7):1014-30. PubMed ID: 27345933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chaperonin cycle and protein folding.
    Lund P
    Bioessays; 1994 Apr; 16(4):229-31. PubMed ID: 7913317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding of newly translated proteins in vivo: the role of molecular chaperones.
    Frydman J
    Annu Rev Biochem; 2001; 70():603-47. PubMed ID: 11395418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of molecular chaperones in intracellular protein breakdown.
    Sherman MY; Goldberg AL
    EXS; 1996; 77():57-78. PubMed ID: 8856969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternative modes of client binding enable functional plasticity of Hsp70.
    Mashaghi A; Bezrukavnikov S; Minde DP; Wentink AS; Kityk R; Zachmann-Brand B; Mayer MP; Kramer G; Bukau B; Tans SJ
    Nature; 2016 Nov; 539(7629):448-451. PubMed ID: 27783598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unfolding the role of chaperones and chaperonins in human disease.
    Slavotinek AM; Biesecker LG
    Trends Genet; 2001 Sep; 17(9):528-35. PubMed ID: 11525836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of molecular chaperones in protein misfolding diseases.
    Barral JM; Broadley SA; Schaffar G; Hartl FU
    Semin Cell Dev Biol; 2004 Feb; 15(1):17-29. PubMed ID: 15036203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.