BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 10221986)

  • 41. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates.
    Szabo A; Korszun R; Hartl FU; Flanagan J
    EMBO J; 1996 Jan; 15(2):408-17. PubMed ID: 8617216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergism between a foldase and an unfoldase: reciprocal dependence between the thioredoxin-like activity of DnaJ and the polypeptide-unfolding activity of DnaK.
    Mattoo RU; Farina Henriquez Cuendet A; Subanna S; Finka A; Priya S; Sharma SK; Goloubinoff P
    Front Mol Biosci; 2014; 1():7. PubMed ID: 25988148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular chaperones and mitochondrial protein folding.
    Martin J
    J Bioenerg Biomembr; 1997 Feb; 29(1):35-43. PubMed ID: 9067800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chaperone-assisted protein folding.
    Martin J; Hartl FU
    Curr Opin Struct Biol; 1997 Feb; 7(1):41-52. PubMed ID: 9032064
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC.
    Stemp MJ; Guha S; Hartl FU; Barral JM
    Biol Chem; 2005 Aug; 386(8):753-7. PubMed ID: 16201870
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones.
    Ben-Zvi A; De Los Rios P; Dietler G; Goloubinoff P
    J Biol Chem; 2004 Sep; 279(36):37298-303. PubMed ID: 15201275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disulfide bonds convert small heat shock protein Hsp16.3 from a chaperone to a non-chaperone: implications for the evolution of cysteine in molecular chaperones.
    Fu X; Li W; Mao Q; Chang Z
    Biochem Biophys Res Commun; 2003 Aug; 308(3):627-35. PubMed ID: 12914797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The neurodegenerative-disease-related protein sacsin is a molecular chaperone.
    Anderson JF; Siller E; Barral JM
    J Mol Biol; 2011 Aug; 411(4):870-80. PubMed ID: 21726565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular chaperones in protein folding: the art of avoiding sticky situations.
    Hartl FU; Hlodan R; Langer T
    Trends Biochem Sci; 1994 Jan; 19(1):20-5. PubMed ID: 7908149
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen deuterium exchange mass spectrometry applied to chaperones and chaperone-assisted protein folding.
    Georgescauld F; Wales TE; Engen JR
    Expert Rev Proteomics; 2019 Jul; 16(7):613-625. PubMed ID: 31215268
    [No Abstract]   [Full Text] [Related]  

  • 53. Disaggregating chaperones: an unfolding story.
    Sharma SK; Christen P; Goloubinoff P
    Curr Protein Pept Sci; 2009 Oct; 10(5):432-46. PubMed ID: 19538153
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chaperones in control of protein disaggregation.
    Liberek K; Lewandowska A; Zietkiewicz S
    EMBO J; 2008 Jan; 27(2):328-35. PubMed ID: 18216875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein folding assisted by chaperones.
    Borges JC; Ramos CH
    Protein Pept Lett; 2005 Apr; 12(3):257-61. PubMed ID: 15777275
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A proteome-wide map of chaperone-assisted protein refolding in a cytosol-like milieu.
    To P; Xia Y; Lee SO; Devlin T; Fleming KG; Fried SD
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2210536119. PubMed ID: 36417429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of chaperone coordination during cotranslational protein folding in bacteria.
    Roeselová A; Maslen SL; Shivakumaraswamy S; Pellowe GA; Howell S; Joshi D; Redmond J; Kjær S; Skehel JM; Balchin D
    Mol Cell; 2024 Jun; ():. PubMed ID: 38908370
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins.
    Mattoo RU; Goloubinoff P
    Cell Mol Life Sci; 2014 Sep; 71(17):3311-25. PubMed ID: 24760129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones.
    Finka A; Sharma SK; Goloubinoff P
    Front Mol Biosci; 2015; 2():29. PubMed ID: 26097841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to refold.
    Thomas JG; Ayling A; Baneyx F
    Appl Biochem Biotechnol; 1997 Jun; 66(3):197-238. PubMed ID: 9276922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.