BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 10222121)

  • 1. Local disinhibition of neocortical neuronal circuits causes augmentation of glutamatergic and GABAergic synaptic transmission in the rat neostriatum in vitro.
    Schlösser B; ten Bruggencate G; Sutor B
    Exp Neurol; 1999 May; 157(1):180-93. PubMed ID: 10222121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperpolarizing synaptic potentials evoked in CA1 pyramidal cells by glutamate stimulation of interneurons from the oriens/alveus border of rat hippocampal slices. II. Sensitivity to GABA antagonists.
    Samulack DD; Lacaille JC
    Hippocampus; 1993 Jul; 3(3):345-58. PubMed ID: 8102583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons.
    Hill EL; Gallopin T; Férézou I; Cauli B; Rossier J; Schweitzer P; Lambolez B
    J Neurophysiol; 2007 Apr; 97(4):2580-9. PubMed ID: 17267760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro.
    Zhang L; Kolaj M; Renaud LP
    Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential inhibitory control of semicircular canal nerve afferent-evoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits.
    Biesdorf S; Malinvaud D; Reichenberger I; Pfanzelt S; Straka H
    J Neurophysiol; 2008 Apr; 99(4):1758-69. PubMed ID: 18256163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target-cell-specific facilitation and depression in neocortical circuits.
    Reyes A; Lujan R; Rozov A; Burnashev N; Somogyi P; Sakmann B
    Nat Neurosci; 1998 Aug; 1(4):279-85. PubMed ID: 10195160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamatergic and GABAergic regulation of neural responses in inferior colliculus to amplitude-modulated sounds.
    Zhang H; Kelly JB
    J Neurophysiol; 2003 Jul; 90(1):477-90. PubMed ID: 12660357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute injury to superficial cortex leads to a decrease in synaptic inhibition and increase in excitation in neocortical layer V pyramidal cells.
    Yang L; Benardo LS; Valsamis H; Ling DS
    J Neurophysiol; 2007 Jan; 97(1):178-87. PubMed ID: 16987927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic and synaptic properties of neurons in the vocal-control nucleus IMAN from in vitro slice preparations of juvenile and adult zebra finches.
    Bottjer SW; Brady JD; Walsh JP
    J Neurobiol; 1998 Dec; 37(4):642-58. PubMed ID: 9858265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABAergic control of substantia nigra dopaminergic neurons.
    Tepper JM; Lee CR
    Prog Brain Res; 2007; 160():189-208. PubMed ID: 17499115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NKCC1 activity modulates formation of functional inhibitory synapses in cultured neocortical neurons.
    Nakanishi K; Yamada J; Takayama C; Oohira A; Fukuda A
    Synapse; 2007 Mar; 61(3):138-49. PubMed ID: 17146765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kainate receptor activation potentiates GABAergic synaptic transmission in the nucleus accumbens core.
    Crowder TL; Ariwodola OJ; Weiner JL
    Brain Res; 2006 May; 1088(1):73-82. PubMed ID: 16626659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic hyperexcitability of deep layer neocortical cells in a genetic model of absence seizures.
    D'Antuono M; Inaba Y; Biagini G; D'Arcangelo G; Tancredi V; Avoli M
    Genes Brain Behav; 2006 Feb; 5(1):73-84. PubMed ID: 16436191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic transmission mediated by ionotropic glutamate, glycine and GABA receptors in the rat's ventral nucleus of the lateral lemniscus.
    Irfan N; Zhang H; Wu SH
    Hear Res; 2005 May; 203(1-2):159-71. PubMed ID: 15855041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo temporal property of GABAergic neural transmission in collateral feed-forward inhibition system of hippocampal-prefrontal pathway.
    Takita M; Kuramochi M; Izaki Y; Ohtomi M
    Brain Res; 2007 May; 1150():69-73. PubMed ID: 17382915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional diversity and specificity of neostriatal interneurons.
    Tepper JM; Bolam JP
    Curr Opin Neurobiol; 2004 Dec; 14(6):685-92. PubMed ID: 15582369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord.
    Inquimbert P; Rodeau JL; Schlichter R
    Eur J Neurosci; 2007 Nov; 26(10):2940-9. PubMed ID: 18001289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons.
    Liu T; Fujita T; Nakatsuka T; Kumamoto E
    J Neurophysiol; 2008 Mar; 99(3):1274-84. PubMed ID: 18216222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.