BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10222182)

  • 1. Evaluation of spinning disc technology for the application of entomopathogenic nematodes against a foliar pest.
    Mason JM; Matthews GA; Wright DJ
    J Invertebr Pathol; 1999 May; 73(3):282-8. PubMed ID: 10222182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility of diamond back moth, Plutella xylostella (L) to entomopathogenic nematodes.
    Shinde S; Singh NP
    Indian J Exp Biol; 2000 Sep; 38(9):956-9. PubMed ID: 12561960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid age-related changes in infection behavior of entomopathogenic nematodes.
    Yoder CA; Grewal PS; Taylor RA
    J Parasitol; 2004 Dec; 90(6):1229-34. PubMed ID: 15715211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-dependent effects on Steinernema glaseri (Nematoda: Steinernematidae) within an insect host.
    Koppenhöfer AM; Kaya HK
    J Parasitol; 1995 Oct; 81(5):797-9. PubMed ID: 7472882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables.
    Brusselman E; Beck B; Pollet S; Temmerman F; Spanoghe P; Moens M; Nuyttens D
    Pest Manag Sci; 2012 Oct; 68(10):1413-8. PubMed ID: 22674828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Steinernema carpocapsae and Bacillus thuringienis strains for control of diamondback moth (Plutella xylostella).
    Yi X; Ehlers RU
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):633-6. PubMed ID: 17390802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diamondback moth in Ukraine: current status and potential for use biological control agents.
    Likar Y; Stefanovska T
    Commun Agric Appl Biol Sci; 2009; 74(2):387-92. PubMed ID: 20222594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entomopathogenic nematodes, root weevil larvae, and dynamic interactions among soil texture, plant growth, herbivory, and predation.
    El-Borai FE; Stuart RJ; Campos-Herrera R; Pathak E; Duncan LW
    J Invertebr Pathol; 2012 Jan; 109(1):134-42. PubMed ID: 22056274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of day of emergence from the insect cadaver on the behavior and environmental tolerances of infective juveniles of the entomopathogenic nematode Heterorhabditis megidis (strain UK211).
    O'Leary SA; Stack CM; Chubb MA; Burnell AM
    J Parasitol; 1998 Aug; 84(4):665-72. PubMed ID: 9714191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence.
    Spence KO; Stevens GN; Arimoto H; Ruiz-Vega J; Kaya HK; Lewis EE
    J Invertebr Pathol; 2011 Feb; 106(2):268-73. PubMed ID: 21047513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larvicidal activity of the symbiotic bacterium Xenorhabdus japonicus from the entomopathogenic nematode Steinernema kushidai against Anomala cuprea (Coleoptera:Scarabaeidae).
    Tachibana M; Hori H; Suzuki N; Uechi T; Kobayashi D; Iwahana H; Kaya HK
    J Invertebr Pathol; 1996 Sep; 68(2):152-9. PubMed ID: 8858911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing the infectivity of a Canadian isolate of Steinernema kraussei (Nematoda: Steinernematidae) at low temperature.
    Mrácek Z; Becvár S; Kindlmann P; Webster JM
    J Invertebr Pathol; 1999 May; 73(3):243-7. PubMed ID: 10222176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Content of saccharides and activity of alpha-glycosidases in Galleria mellonella larvae infected with entomopathogenic nematodes Heterorhabditis zealandica.
    Zółtowska K
    Wiad Parazytol; 2004; 50(3):495-501. PubMed ID: 16865959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis.
    Enright MR; Griffin CT
    J Invertebr Pathol; 2005 Jan; 88(1):40-8. PubMed ID: 15707868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entomopathogenic nematodes as control agents of developmental stages of the black-legged tick, Ixodes scapularis.
    Hill DE
    J Parasitol; 1998 Dec; 84(6):1124-7. PubMed ID: 9920301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth.
    Malan AP; Knoetze R; Moore SD
    J Invertebr Pathol; 2011 Oct; 108(2):115-25. PubMed ID: 21839086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of entomopathogenic nematodes against larvae of Tuta absoluta in the laboratory.
    Van Damme VM; Beck BK; Berckmoes E; Moerkens R; Wittemans L; De Vis R; Nuyttens D; Casteels HF; Maes M; Tirry L; De Clercq P
    Pest Manag Sci; 2016 Sep; 72(9):1702-9. PubMed ID: 26620187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycogen: its importance in the infectivity of aged juveniles of Steinernema carpocapsae.
    Patel MN; Wright DJ
    Parasitology; 1997 Jun; 114 ( Pt 6)():591-6. PubMed ID: 9172428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of different sponge types on the survival and infectivity of stored entomopathogenic nematodes.
    Touray M; Gulcu B; Ulug D; Gulsen SH; Cimen H; Kaya HK; Cakmak I; Hazir S
    J Invertebr Pathol; 2020 Mar; 171():107332. PubMed ID: 32027881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the biocontrol potential of Steinernema feltiae against Delia radicum through dosage, application technique and timing.
    Beck B; Spanoghe P; Moens M; Brusselman E; Temmerman F; Pollet S; Nuyttens D
    Pest Manag Sci; 2014 May; 70(5):841-51. PubMed ID: 23943630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.