These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 10222419)
1. Boron neutron capture enhancement (BNCE) of fast neutron irradiation for glioblastoma: increase of thermal neutron flux with heavy material collimation, a theoretical evaluation. Paquis P; Pignol JP; Lonjon M; Brassart N; Courdi A; Chauvel P; Grellier P; Chatel M J Neurooncol; 1999 Jan; 41(1):21-30. PubMed ID: 10222419 [TBL] [Abstract][Full Text] [Related]
2. Combined use of FLUKA and MCNP-4A for the Monte Carlo simulation of the dosimetry of 10B neutron capture enhancement of fast neutron irradiations. Pignol JP; Cuendet P; Brassart N; Fares G; Colomb F; M'Bake Diop C; Sabattier R; Hachem A; Prevot G Med Phys; 1998 Jun; 25(6):885-91. PubMed ID: 9650176 [TBL] [Abstract][Full Text] [Related]
3. Beam collimation and bolusing material optimizations for 10boron neutron capture enhancement of fast neutron (BNCEFN): definition of the optimum irradiation technique. Pignol JP; Paquis P; Cuendet P; Gibon D; Diop CM; Sabattier R Int J Radiat Oncol Biol Phys; 1999 Mar; 43(5):1151-9. PubMed ID: 10192367 [TBL] [Abstract][Full Text] [Related]
4. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
5. Boron neutron capture irradiation: setting up a clinical programme in Nice. Pignol JP; Chauvel P; Paquis P; Courdi A; Iborra-Brassart N; Lonjon M; Lebrun-Frenay C; Frenay M; Grellier P; Chatel M; Hérault J; Bensadoun RJ; Milano G; Nepveu F; Patau JP; Demard F; Breteau N Bull Cancer Radiother; 1996; 83 Suppl():201s-6s. PubMed ID: 8949780 [TBL] [Abstract][Full Text] [Related]
6. Calculation of dose components in head phantom for boron neutron capture therapy. da Silva AX; Crispim VR Cell Mol Biol (Noisy-le-grand); 2002 Nov; 48(7):813-7. PubMed ID: 12622057 [TBL] [Abstract][Full Text] [Related]
7. Boron neutron capture enhancement of fast neutron radiotherapy utilizing a moderated fast neutron beam. Burmeister J; Yudelev M; Kota C; Maughan RL Med Phys; 2005 Mar; 32(3):666-72. PubMed ID: 15839338 [TBL] [Abstract][Full Text] [Related]
8. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors. Rasouli FS; Masoudi SF Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433 [TBL] [Abstract][Full Text] [Related]
9. The neutron sensitivity of dosimeters applied to boron neutron capture therapy. Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo calculation of dose enhancement by neutron capture of 10B in fast neutron therapy. Pöller F; Sauerwein W; Rassow J Phys Med Biol; 1993 Mar; 38(3):397-410. PubMed ID: 8451283 [TBL] [Abstract][Full Text] [Related]
11. A prototype epithermal neutron beam for boron neutron capture therapy. Noonan DJ; Russell JL; Brugger RM Med Phys; 1986; 13(2):211-6. PubMed ID: 3010065 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of the new THOR epithermal neutron beam for BNCT. Tung CJ; Wang YL; Hsu FY; Chang SL; Liu YW Appl Radiat Isot; 2004 Nov; 61(5):861-4. PubMed ID: 15308158 [TBL] [Abstract][Full Text] [Related]
13. GE PETtrace cyclotron as a neutron source for boron neutron capture therapy. Bosko A; Zhilchenkov D; Reece WD Appl Radiat Isot; 2004 Nov; 61(5):1057-62. PubMed ID: 15308192 [TBL] [Abstract][Full Text] [Related]
14. Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam. Kiger WS; Lu XQ; Harling OK; Riley KJ; Binns PJ; Kaplan J; Patel H; Zamenhof RG; Shibata Y; Kaplan ID; Busse PM; Palmer MR Appl Radiat Isot; 2004 Nov; 61(5):1075-81. PubMed ID: 15308195 [TBL] [Abstract][Full Text] [Related]
15. Beam shaping assembly design of Zaidi L; Belgaid M; Taskaev S; Khelifi R Appl Radiat Isot; 2018 Sep; 139():316-324. PubMed ID: 29890472 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data. Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948 [TBL] [Abstract][Full Text] [Related]
17. Filter, collimator and moderating material to achieve boron neutron capture enhanced fast neutron therapy. Sweezy J; Hertel N; Lennox A Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):470-4. PubMed ID: 16604680 [TBL] [Abstract][Full Text] [Related]
18. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components. Moghaddasi L; Bezak E Australas Phys Eng Sci Med; 2018 Mar; 41(1):129-141. PubMed ID: 29362987 [TBL] [Abstract][Full Text] [Related]
19. Boron self-shielding effects on dose delivery of neutron capture therapy using epithermal beam and boronophenylalanine. Ye SJ Med Phys; 1999 Nov; 26(11):2488-93. PubMed ID: 10587238 [TBL] [Abstract][Full Text] [Related]
20. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field. Kim MS; Lee BC; Hwang SY; Kim H; Jun BJ Phys Med Biol; 2007 May; 52(9):2553-66. PubMed ID: 17440252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]