These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 10222575)

  • 1. Biological monitoring of tetrahydrofuran: contribution of a physiologically based pharmacokinetic model.
    Droz PO; Berode M; Jang JY
    Am Ind Hyg Assoc J; 1999; 60(2):243-8. PubMed ID: 10222575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of variation in exposure to airborne acetone and difference in work load on acetone concentrations in blood, urine, and exhaled air.
    Kumagai S; Matsunaga I; Tabuchi T
    Am Ind Hyg Assoc J; 1998 Apr; 59(4):242-51. PubMed ID: 9586199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of potential toxicity from co-exposure to three CNS depressants (toluene, ethylbenzene, and xylene) under resting and working conditions using PBPK modeling.
    Dennison JE; Bigelow PL; Mumtaz MM; Andersen ME; Dobrev ID; Yang RS
    J Occup Environ Hyg; 2005 Mar; 2(3):127-35. PubMed ID: 15764536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New PBPK model applied to old occupational exposure to benzene.
    Sherwood RJ; Sinclair GC
    Am Ind Hyg Assoc J; 1999; 60(2):259-65. PubMed ID: 10222577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically based pharmacokinetic modelling of human exposure to 2-butoxyethanol.
    Franks SJ; Spendiff MK; Cocker J; Loizou GD
    Toxicol Lett; 2006 Apr; 162(2-3):164-73. PubMed ID: 16246510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological monitoring: the role of toxicokinetics and physiologically based pharmacokinetic modeling.
    Mason H; Wilson K
    Am Ind Hyg Assoc J; 1999; 60(2):237-42. PubMed ID: 10222574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Admissible concentration in biological material: an index of exposure to dichloromethane].
    Kupczewska-Dobecka M; Soćko R
    Med Pr; 2008; 59(2):187-95. PubMed ID: 18652144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: The example of occupational exposure to styrene.
    Verner MA; McDougall R; Johanson G
    Toxicol Lett; 2012 Sep; 213(2):299-304. PubMed ID: 22677344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal for single and mixture biological exposure limits for sevoflurane and nitrous oxide at low occupational exposure levels.
    Accorsi A; Valenti S; Barbieri A; Raffi GB; Violante FS
    Int Arch Occup Environ Health; 2003 Mar; 76(2):129-36. PubMed ID: 12733085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a physiologically based model to predict systemic uptake and respiratory elimination of perchloroethylene.
    Dallas CE; Muralidhara S; Chen XM; Ramanathan R; Varkonyi P; Gallo JM; Bruckner JV
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):60-8. PubMed ID: 8079355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in correlation coefficients of exposure markers as a function of intensity of occupational exposure to toluene.
    Ikeda M; Ukai H; Kawai T; Inoue O; Maejima Y; Fukui Y; Ohashi F; Okamoto S; Takada S; Sakurai H
    Toxicol Lett; 2008 Jul; 179(3):148-54. PubMed ID: 18583070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of repeated dose kinetics of methyl isobutyl ketone in humans from experimental single-dose inhalation exposure.
    Saghir SA; Rick DL
    Regul Toxicol Pharmacol; 2008 Nov; 52(2):180-8. PubMed ID: 18789368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Occupational poisoning and biological exposure monitoring].
    Miyakoshi Y; Shimizu H
    Rinsho Byori; 2008 Nov; Suppl 141():19-26. PubMed ID: 20815146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The biological monitoring of occupational exposures to solvents by using their urinary concentrations].
    Perbellini L; Ghittori S
    Med Lav; 1998; 89(5):375-86. PubMed ID: 10064942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt exposure level and variability in the hard metal industry of Japan.
    Kumagai S; Kusaka Y; Goto S
    Am Ind Hyg Assoc J; 1996 Apr; 57(4):365-9. PubMed ID: 8901238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of statistical models to estimate the correlation between urinary benzene as biological indicator of exposure and air concentrations determined by personal monitoring.
    Tolentino D; Zenari E; Dall'Olio M; Ruani G; Gelormini A; Mirone G
    AIHA J (Fairfax, Va); 2003; 64(5):625-9. PubMed ID: 14521437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of physiologically based pharmacokinetic models to establish biological exposure indexes.
    Leung HW
    Am Ind Hyg Assoc J; 1992 Jun; 53(6):369-74. PubMed ID: 1605109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating pesticide exposure in tidal streams of Leadenwah Creek, South Carolina.
    Acevedo MF; Ablan M; Dickson KL; Waller WT; Mayer FL; Morton M
    J Toxicol Environ Health; 1997 Nov; 52(4):295-316. PubMed ID: 9354176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-dependent metabolism of 2,2-dichloro-1,1,1-trifluoroethane: a physiologically based pharmacokinetic model in the male Fischer 344 rat.
    Vinegar A; Williams RJ; Fisher JW; McDougal JN
    Toxicol Appl Pharmacol; 1994 Nov; 129(1):103-13. PubMed ID: 7974482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.