BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1022288)

  • 1. [Sterospecific selection of nucleophilic compounds in the chymotrypsin-catalyzed formation of the peptide bonds].
    Ivanov LL; Botvinik MM
    Biokhimiia; 1976 Apr; 41(4):619-29. PubMed ID: 1022288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide synthesis catalyzed by polyethylene glycol-modified chymotrypsin in organic solvents.
    Gaertner HF; Puigserver AJ
    Proteins; 1988; 3(2):130-7. PubMed ID: 3399494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Peptide synthesis catalyzed by proteases. Elevated nucleophilic activity of naphthylamides of amino acids in acyl transfer reactions catalyzed by alpha-chymotrypsin].
    Gololobov MIu; Shviadas VK
    Biokhimiia; 1988 Jul; 53(7):1174-80. PubMed ID: 3179365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin.
    Iijima K; Katada J; Yasuda E; Uno I; Hayashi Y
    J Med Chem; 1999 Jan; 42(2):312-23. PubMed ID: 9925737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies on the mechanism and the specificity of peptide semisynthesis catalyzed by the serine proteases alpha-chymotrypsin and beta-trypsin.
    Riechmann L; Kasche V
    Biochem Biophys Res Commun; 1984 Apr; 120(2):686-91. PubMed ID: 6732779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of non-natural amino acid residues into the substrate-specific P1 position of trypsin inhibitor SFTI-1 yields potent chymotrypsin and cathepsin G inhibitors.
    Łegowska A; Debowski D; Lesner A; Wysocka M; Rolka K
    Bioorg Med Chem; 2009 May; 17(9):3302-7. PubMed ID: 19362846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased nucleophile reactivity of amino acid beta-naphthylamides in alpha-chymotrypsin-catalyzed peptide synthesis.
    Gololobov MYu ; Petrauskas A; Pauliukonis R; Koschke V; Borisov IL; Svedas V
    Biochim Biophys Acta; 1990 Oct; 1041(1):71-8. PubMed ID: 2223849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the S'-subsite specificity of bovine pancreatic alpha-chymotrypsin via acyl transfer to added nucleophiles.
    Schellenberger V; Schellenberger U; Mitin YV; Jakubke HD
    Eur J Biochem; 1990 Jan; 187(1):163-7. PubMed ID: 2298203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protease-catalyzed peptide synthesis for the site-specific incorporation of alpha-fluoroalkyl amino acids into peptides.
    Thust S; Koksch B
    J Org Chem; 2003 Mar; 68(6):2290-6. PubMed ID: 12636393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interaction of aminoacyl-tRNA-synthetases with amino acids].
    Lavrik OI; Moor NA
    Mol Biol (Mosk); 1984; 18(5):1208-32. PubMed ID: 6390172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protease-catalyzed peptide synthesis using inverse substrates: the synthesis of Pro-Xaa-bonds by trypsin.
    Schellenberger V; Schellenberger U; Jakubke HD; Zapevalova NP; Mitin YV
    Biotechnol Bioeng; 1991 Jul; 38(3):319-21. PubMed ID: 18600766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleophile specificity in alpha-chymotrypsin- and subtilisin-(Bacillus subtilis strain 72) catalyzed reactions.
    Gololobov MYu ; Voyushina TL; Stepanov VM; Adlercreutz P
    Biochim Biophys Acta; 1992 Nov; 1160(2):188-92. PubMed ID: 1445945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fairly marked enantioselectivity for the hydrolysis of amino acid esters by chemically modified enzymes.
    Yano Y; Shimada K; Okai J; Goto K; Matsumoto Y; Ueoka R
    J Org Chem; 2003 Feb; 68(4):1314-8. PubMed ID: 12585870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleophile selectivity in the acyl transfer reaction of a designed enzyme.
    Hederos S; Baltzer L
    Biopolymers; 2005 Dec; 79(6):292-9. PubMed ID: 16108014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis.
    Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G
    Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serine proteinase-catalyzed incorporation of D-amino into model peptides in acetonitrile with low water content.
    Cerovský V
    Biomed Biochim Acta; 1991; 50(10-11):S44-9. PubMed ID: 1820059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of protease inhibitors on the basis of substrate stereospecificity.
    Kim DH
    Biopolymers; 1999; 51(1):3-8. PubMed ID: 10380348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molluscan chymotrypsin-like protease: structure, localization, and substrate specificity.
    Groppe JC; Morse DE
    Arch Biochem Biophys; 1993 Aug; 305(1):159-69. PubMed ID: 8342947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 DD-peptidase: the structural basis of acyl acceptor specificity.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9961-70. PubMed ID: 16042373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.