These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10223288)

  • 21. Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand.
    Li L; Xu W; Lü Q
    J Mol Model; 2015 Nov; 21(11):294. PubMed ID: 26515196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands.
    Marhefka CA; Moore BM; Bishop TC; Kirkovsky L; Mukherjee A; Dalton JT; Miller DD
    J Med Chem; 2001 May; 44(11):1729-40. PubMed ID: 11356108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling and selection of flexible proteins for structure-based drug design: backbone and side chain movements in p38 MAPK.
    Subramanian J; Sharma S; B-Rao C
    ChemMedChem; 2008 Feb; 3(2):336-44. PubMed ID: 18081134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method for biomolecular structural recognition and docking allowing conformational flexibility.
    Sandak B; Nussinov R; Wolfson HJ
    J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative molecular dynamics simulations of the potent synthetic classical cannabinoid ligand AMG3 in solution and at binding site of the CB1 and CB2 receptors.
    Durdagi S; Reis H; Papadopoulos MG; Mavromoustakos T
    Bioorg Med Chem; 2008 Aug; 16(15):7377-87. PubMed ID: 18595717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An anchor-dependent molecular docking process for docking small flexible molecules into rigid protein receptors.
    Lin TH; Lin GL
    J Chem Inf Model; 2008 Aug; 48(8):1638-55. PubMed ID: 18642894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible docking of ligands into synthetic receptors using a two-sided incremental construction algorithm.
    Steffen A; Kämper A; Lengauer T
    J Chem Inf Model; 2006; 46(4):1695-703. PubMed ID: 16859301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible protein-flexible ligand docking with disrupted velocity simulated annealing.
    Huang Z; Wong CF; Wheeler RA
    Proteins; 2008 Apr; 71(1):440-54. PubMed ID: 17957770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of heuristic search algorithms for molecular docking.
    Westhead DR; Clark DE; Murray CW
    J Comput Aided Mol Des; 1997 May; 11(3):209-28. PubMed ID: 9263849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of crystal freezing and small-molecule binding on internal cavity size in a large protein: X-ray and docking studies of lipoxygenase at ambient and low temperature at 2.0 A resolution.
    Skrzypczak-Jankun E; Borbulevych OY; Zavodszky MI; Baranski MR; Padmanabhan K; Petricek V; Jankun J
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):766-75. PubMed ID: 16790932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible ligand docking using conformational ensembles.
    Lorber DM; Shoichet BK
    Protein Sci; 1998 Apr; 7(4):938-50. PubMed ID: 9568900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New general approach for determining the solution structure of a ligand bound weakly to a receptor: structure of a fibrinogen Aalpha-like peptide bound to thrombin (S195A) obtained using NOE distance constraints and an ECEPP/3 flexible docking program.
    Maurer MC; Trosset JY; Lester CC; DiBella EE; Scheraga HA
    Proteins; 1999 Jan; 34(1):29-48. PubMed ID: 10336381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved FlexX docking using FlexS-determined base fragment placement.
    Cross SS
    J Chem Inf Model; 2005; 45(4):993-1001. PubMed ID: 16045293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the specificity of antibody/antigen interactions: phosphocholine binding to McPC603 and the correlation of three-dimensional structure and sequence data.
    Padlan EA; Cohen GH; Davies DR
    Ann Inst Pasteur Immunol (1985); 1985; 136C(2):271-6. PubMed ID: 3890687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple automatic base selection: protein-ligand docking based on incremental construction without manual intervention.
    Rarey M; Kramer B; Lengauer T
    J Comput Aided Mol Des; 1997 Jul; 11(4):369-84. PubMed ID: 9334903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulations of domain motions of substrate-free S-adenosyl- L-homocysteine hydrolase in solution.
    Hu C; Fang J; Borchardt RT; Schowen RL; Kuczera K
    Proteins; 2008 Apr; 71(1):131-43. PubMed ID: 17932938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking.
    Kramer B; Rarey M; Lengauer T
    Proteins; 1999 Nov; 37(2):228-41. PubMed ID: 10584068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible protein-ligand docking by global energy optimization in internal coordinates.
    Totrov M; Abagyan R
    Proteins; 1997; Suppl 1():215-20. PubMed ID: 9485515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using robotics to fold proteins and dock ligands.
    Brutlag D; Apaydin S; Guestrin C; Hsu D; Varma C; Singh A; Latombe JC
    Bioinformatics; 2002; 18 Suppl 2():S74. PubMed ID: 12385986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.