These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10223297)

  • 21. Only subtle protein conformational adaptations are required for ligand binding to thyroid hormone receptors: simulations using a novel multipoint steered molecular dynamics approach.
    Martínez L; Polikarpov I; Skaf MS
    J Phys Chem B; 2008 Aug; 112(34):10741-51. PubMed ID: 18681473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of stable analogs of myosin ATPase intermediates for kinetic studies of the "weak" binding of myosin heads to F-actin.
    Rostkova EV; Moiseeva LN; Teplova MV; Nikolaeva OP; Levitsky DI
    Biochemistry (Mosc); 1999 Aug; 64(8):875-82. PubMed ID: 10498802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
    Luo N; Mehler E; Osman R
    Biochemistry; 1999 Jul; 38(29):9209-20. PubMed ID: 10413495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brownian dynamics of interactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mutants and F-actin.
    Waingeh VF; Lowe SL; Thomasson KA
    Biopolymers; 2004 Apr; 73(5):533-41. PubMed ID: 15048777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.
    Tiago T; Aureliano M; Gutiérrez-Merino C
    Biochemistry; 2004 May; 43(18):5551-61. PubMed ID: 15122921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrative simulation model linking major biochemical reactions of actin-polymerization to structural properties of actin filaments.
    Halavatyi AA; Nazarov PV; Medves S; van Troys M; Ampe C; Yatskou M; Friederich E
    Biophys Chem; 2009 Mar; 140(1-3):24-34. PubMed ID: 19101066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate specificity of the two phosphate transport systems of Acinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1994 Jun; 269(23):16212-6. PubMed ID: 8206923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge loss in gas-phase multiply negatively charged oligonucleotides.
    Anusiewicz I; Berdys-Kochanska J; Czaplewski C; Sobczyk M; Daranowski EM; Skurski P; Simons J
    J Phys Chem A; 2005 Jan; 109(1):240-9. PubMed ID: 16839113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of phosphate release from actin filaments.
    Wang Y; Wu J; Zsolnay V; Pollard TD; Voth GA
    Proc Natl Acad Sci U S A; 2024 Jul; 121(29):e2408156121. PubMed ID: 38980907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of approaches to measure cooperative phosphate release in polymerized actin.
    Burnett MM; Carlsson AE
    Biophys J; 2012 Dec; 103(11):2369-78. PubMed ID: 23283236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics analysis of structural factors influencing back door pi release in myosin.
    Lawson JD; Pate E; Rayment I; Yount RG
    Biophys J; 2004 Jun; 86(6):3794-803. PubMed ID: 15189875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Significance of His73 in F-Actin Dynamics: Insights from Ab Initio Study.
    Li T; Du J; Ren M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Step-Wise Hydration of Magnesium by Four Water Molecules Precedes Phosphate Release in a Myosin Motor.
    Mugnai ML; Thirumalai D
    J Phys Chem B; 2021 Feb; 125(4):1107-1117. PubMed ID: 33481593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SETD3 is an actin histidine methyltransferase that prevents primary dystocia.
    Wilkinson AW; Diep J; Dai S; Liu S; Ooi YS; Song D; Li TM; Horton JR; Zhang X; Liu C; Trivedi DV; Ruppel KM; Vilches-Moure JG; Casey KM; Mak J; Cowan T; Elias JE; Nagamine CM; Spudich JA; Cheng X; Carette JE; Gozani O
    Nature; 2019 Jan; 565(7739):372-376. PubMed ID: 30626964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Connecting the dots in the mechanism of action of Cucurbitacin E (CurE) - path analysis and steered molecular dynamics reveal the precise site of entry and the passage of CurE in filamentous actin.
    Roopa L; Akshai PS; Pravin Kumar R
    J Biomol Struct Dyn; 2020 Feb; 38(3):635-646. PubMed ID: 30896293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of Phosphate Release from Actin Filaments.
    Wang Y; Wu J; Zsolnay V; Pollard TD; Voth GA
    bioRxiv; 2024 May; ():. PubMed ID: 37577500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of Ile71 in β-actin on histidine methyltransferase SETD3 catalysis.
    Bilgin N; Moesgaard L; Maas MN; Hintzen JCJ; Witecka A; Drozak J; Kongsted J; Mecinović J
    Org Biomol Chem; 2022 Feb; 20(8):1723-1730. PubMed ID: 35142326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On phosphate release in actin filaments.
    Jégou A; Niedermayer T; Lipowsky R; Carlier MF; Romet-Lemonne G
    Biophys J; 2013 Jun; 104(12):2778-9. PubMed ID: 23790388
    [No Abstract]   [Full Text] [Related]  

  • 40. Response to "on phosphate release in actin filaments".
    Burnett MM; Carlsson AE
    Biophys J; 2013 Jun; 104(12):2780. PubMed ID: 23790389
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.