BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10223669)

  • 1. Significantly lower entropy estimates for natural DNA sequences.
    Loewenstern D; Yianilos PN
    J Comput Biol; 1999; 6(1):125-42. PubMed ID: 10223669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal entropy probability paths between genome families.
    Ahlbrandt C; Benson G; Casey W
    J Math Biol; 2004 May; 48(5):563-90. PubMed ID: 15133624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the entropy of DNA sequences.
    Schmitt AO; Herzel H
    J Theor Biol; 1997 Oct; 188(3):369-77. PubMed ID: 9344742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression of strings with approximate repeats.
    Allison L; Edgoose T; Dix TI
    Proc Int Conf Intell Syst Mol Biol; 1998; 6():8-16. PubMed ID: 9783204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation approach to identify coding regions in DNA sequences.
    Ossadnik SM; Buldyrev SV; Goldberger AL; Havlin S; Mantegna RN; Peng CK; Simons M; Stanley HE
    Biophys J; 1994 Jul; 67(1):64-70. PubMed ID: 7919025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of protein coding genes in the yeast genome based on the relative-entropy of DNA.
    Li C; Helal N; Wang J
    Comb Chem High Throughput Screen; 2006 Jan; 9(1):49-54. PubMed ID: 16454686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A block coding method that leads to significantly lower entropy values for the proteins and coding sections of Haemophilus influenzae.
    Sampath G
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():287-93. PubMed ID: 16452804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong short-range correlations and dichotomic codon classes in coding DNA sequences.
    Gonzalez DL; Giannerini S; Rosa R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051918. PubMed ID: 19113166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA viewed as an out-of-equilibrium structure.
    Provata A; Nicolis C; Nicolis G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052105. PubMed ID: 25353737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of logistic models for the analysis of codon frequencies of DNA sequences in terms of explanatory variables.
    Amfoh KK; Shaw RF; Bonney GE
    Biometrics; 1994 Dec; 50(4):1054-63. PubMed ID: 7786987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of significant patterns by compression algorithms: the case of approximate tandem repeats in DNA sequences.
    Rivals E; Delgrange O; Delahaye JP; Dauchet M; Delorme MO; Hénaut A; Ollivier E
    Comput Appl Biosci; 1997 Apr; 13(2):131-6. PubMed ID: 9146959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of rank and select functions on hierarchical binary string and its application to genome mapping problems for short-read DNA sequences.
    Kimura K; Suzuki Y; Sugano S; Koike A
    J Comput Biol; 2009 Nov; 16(11):1601-13. PubMed ID: 19772398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical analytical approach to decipher information from biological sequences: application to murine splice-site analysis and prediction.
    Reddy BV; Pandit MW
    J Biomol Struct Dyn; 1995 Feb; 12(4):785-801. PubMed ID: 7779300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding borders between coding and noncoding DNA regions by an entropic segmentation method.
    Bernaola-Galván P; Grosse I; Carpena P; Oliver JL; Román-Roldán R; Stanley HE
    Phys Rev Lett; 2000 Aug; 85(6):1342-5. PubMed ID: 10991547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction of hidden Markov model representations of signal patterns in DNA sequences.
    Yada T; Ishikawa M; Tanaka H; Asai K
    Pac Symp Biocomput; 1996; ():686-96. PubMed ID: 9390268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.