These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 10223669)

  • 1. Significantly lower entropy estimates for natural DNA sequences.
    Loewenstern D; Yianilos PN
    J Comput Biol; 1999; 6(1):125-42. PubMed ID: 10223669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal entropy probability paths between genome families.
    Ahlbrandt C; Benson G; Casey W
    J Math Biol; 2004 May; 48(5):563-90. PubMed ID: 15133624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the entropy of DNA sequences.
    Schmitt AO; Herzel H
    J Theor Biol; 1997 Oct; 188(3):369-77. PubMed ID: 9344742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression of strings with approximate repeats.
    Allison L; Edgoose T; Dix TI
    Proc Int Conf Intell Syst Mol Biol; 1998; 6():8-16. PubMed ID: 9783204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation approach to identify coding regions in DNA sequences.
    Ossadnik SM; Buldyrev SV; Goldberger AL; Havlin S; Mantegna RN; Peng CK; Simons M; Stanley HE
    Biophys J; 1994 Jul; 67(1):64-70. PubMed ID: 7919025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of protein coding genes in the yeast genome based on the relative-entropy of DNA.
    Li C; Helal N; Wang J
    Comb Chem High Throughput Screen; 2006 Jan; 9(1):49-54. PubMed ID: 16454686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A block coding method that leads to significantly lower entropy values for the proteins and coding sections of Haemophilus influenzae.
    Sampath G
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():287-93. PubMed ID: 16452804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong short-range correlations and dichotomic codon classes in coding DNA sequences.
    Gonzalez DL; Giannerini S; Rosa R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051918. PubMed ID: 19113166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA viewed as an out-of-equilibrium structure.
    Provata A; Nicolis C; Nicolis G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052105. PubMed ID: 25353737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of logistic models for the analysis of codon frequencies of DNA sequences in terms of explanatory variables.
    Amfoh KK; Shaw RF; Bonney GE
    Biometrics; 1994 Dec; 50(4):1054-63. PubMed ID: 7786987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of significant patterns by compression algorithms: the case of approximate tandem repeats in DNA sequences.
    Rivals E; Delgrange O; Delahaye JP; Dauchet M; Delorme MO; Hénaut A; Ollivier E
    Comput Appl Biosci; 1997 Apr; 13(2):131-6. PubMed ID: 9146959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of rank and select functions on hierarchical binary string and its application to genome mapping problems for short-read DNA sequences.
    Kimura K; Suzuki Y; Sugano S; Koike A
    J Comput Biol; 2009 Nov; 16(11):1601-13. PubMed ID: 19772398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical analytical approach to decipher information from biological sequences: application to murine splice-site analysis and prediction.
    Reddy BV; Pandit MW
    J Biomol Struct Dyn; 1995 Feb; 12(4):785-801. PubMed ID: 7779300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding borders between coding and noncoding DNA regions by an entropic segmentation method.
    Bernaola-Galván P; Grosse I; Carpena P; Oliver JL; Román-Roldán R; Stanley HE
    Phys Rev Lett; 2000 Aug; 85(6):1342-5. PubMed ID: 10991547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction of hidden Markov model representations of signal patterns in DNA sequences.
    Yada T; Ishikawa M; Tanaka H; Asai K
    Pac Symp Biocomput; 1996; ():686-96. PubMed ID: 9390268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.