These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10224025)

  • 1. Biodegradation of cyclohexylamine by Brevibacterium oxydans IH-35A.
    Iwaki H; Shimizu M; Tokuyama T; Hasegawa Y
    Appl Environ Microbiol; 1999 May; 65(5):2232-4. PubMed ID: 10224025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification and characterization of genes encoding cyclohexylamine degradation in a novel cyclohexylamine-degrading bacterial strain of Pseudomonas plecoglossicida NyZ12.
    Yan DZ; Li X; Li CZ; Mao LQ; Chi XQ; Zhou NY; Liu DY
    J Biotechnol; 2017 Jun; 251():166-173. PubMed ID: 28472672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of a novel cyclohexylamine oxidase from Brevibacterium oxydans IH-35A.
    Mirza IA; Burk DL; Xiong B; Iwaki H; Hasegawa Y; Grosse S; Lau PC; Berghuis AM
    PLoS One; 2013; 8(3):e60072. PubMed ID: 23555888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a New Cyclohexylamine Oxidase From
    Zhou H; Han ZG; Fang T; Chen YY; Ning SB; Gan YT; Yan DZ
    Front Microbiol; 2018; 9():2848. PubMed ID: 30524413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3,5-diaminohexanoate-decomposing Brevibacterium.
    Hong SL; Barker HA
    J Bacteriol; 1972 Oct; 112(1):231-4. PubMed ID: 5079062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a novel cyclohexylamine oxidase from the cyclohexylamine-degrading Brevibacterium oxydans IH-35A.
    Iwaki H; Shimizu M; Tokuyama T; Hasegawa Y
    J Biosci Bioeng; 1999; 88(3):264-8. PubMed ID: 16232609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draft Genome Sequence of Cyclohexylamine-Degrading Strain Acinetobacter sp. YT-02 Isolated.
    Yan DZ; Gan YT; Zhou H; Liu J; Li X
    Curr Microbiol; 2018 Mar; 75(3):284-287. PubMed ID: 29063968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and some properties of cyclohexylamine oxidase from a Pseudomonas sp.
    Tokieda T; Niimura T; Takamura F; Yamaha T
    J Biochem; 1977 Apr; 81(4):851-8. PubMed ID: 18451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brevibacterium frigoritolerans as a Novel Organism for the Bioremediation of Phorate.
    Jariyal M; Gupta VK; Mandal K; Jindal V
    Bull Environ Contam Toxicol; 2015 Nov; 95(5):680-6. PubMed ID: 26205232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol.
    Verma T; Singh N
    J Basic Microbiol; 2013 Mar; 53(3):277-90. PubMed ID: 22733606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and identification of thiocyanate utilizing chemolithotrophs from gold mine soils.
    Lee C; Kim J; Chang J; Hwang S
    Biodegradation; 2003 Jun; 14(3):183-8. PubMed ID: 12889608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete genome sequence of the cyclohexylamine-degrading Pseudomonas plecoglossicida NyZ12.
    Li X; Li CZ; Mao LQ; Yan DZ; Zhou NY
    J Biotechnol; 2015 Apr; 199():29-30. PubMed ID: 25701176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway.
    Chen S; Dong YH; Chang C; Deng Y; Zhang XF; Zhong G; Song H; Hu M; Zhang LH
    Bioresour Technol; 2013 Mar; 132():16-23. PubMed ID: 23395753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cis-terpin hydrate metabolism by a Brevibacterium: patterns of enzyme induction, and accumulation of -terpineol in growth.
    Baum RH; Marr EK
    J Bacteriol; 1972 Apr; 110(1):229-35. PubMed ID: 4336108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of bacterial strains with the ability to utilize high concentrations of levulinic acid, a platform chemical from inedible biomass.
    Habe H; Sato S; Morita T; Fukuoka T; Kirimura K; Kitamoto D
    Biosci Biotechnol Biochem; 2015; 79(9):1552-5. PubMed ID: 25851167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA differential display.
    Brzostowicz PC; Gibson KL; Thomas SM; Blasko MS; Rouvière PE
    J Bacteriol; 2000 Aug; 182(15):4241-8. PubMed ID: 10894733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of fluorene by Brevibacterium sp. strain DPO 1361: a novel C-C bond cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one.
    Trenz SP; Engesser KH; Fischer P; Knackmuss HJ
    J Bacteriol; 1994 Feb; 176(3):789-95. PubMed ID: 8300532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by fatty acids of the biodegradation of petroleum.
    Atlas RM; Bartha R
    Antonie Van Leeuwenhoek; 1973; 39(2):257-71. PubMed ID: 4541602
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on the resistance of activated sludge bacteria to high concentrations of methanol, butanol, glycol, cyclohexanone and cyclohexylamine.
    Bieszkiewicz E; Szymańska D
    Acta Microbiol Pol; 1987; 36(3):259-65. PubMed ID: 2447754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reclassification of Brevibacterium halotolerans DSM8802 as Bacillus halotolerans comb. nov. Based on Microbial and Biochemical Characterization and Multiple Gene Sequence.
    Ben-Gad D; Gerchman Y
    Curr Microbiol; 2017 Jan; 74(1):1-5. PubMed ID: 27717990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.