BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10224069)

  • 21. Use of pH and kinetic isotope effects to establish chemistry as rate-limiting in oxidation of a peptide substrate by LSD1.
    Gaweska H; Henderson Pozzi M; Schmidt DM; McCafferty DG; Fitzpatrick PF
    Biochemistry; 2009 Jun; 48(23):5440-5. PubMed ID: 19408960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The kinetic behavior of chicken liver sulfite oxidase.
    Brody MS; Hille R
    Biochemistry; 1999 May; 38(20):6668-77. PubMed ID: 10350486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The flavinylation reaction of trimethylamine dehydrogenase. Analysis by directed mutagenesis and electrospray mass spectrometry.
    Packman LC; Mewies M; Scrutton NS
    J Biol Chem; 1995 Jun; 270(22):13186-91. PubMed ID: 7768915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prototropic control of intramolecular electron transfer in trimethylamine dehydrogenase.
    Rohlfs RJ; Huang L; Hille R
    J Biol Chem; 1995 Sep; 270(38):22196-207. PubMed ID: 7673198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The reductive half-reaction of xanthine oxidase. The involvement of prototropic equilibria in the course of the catalytic sequence.
    Kim JH; Ryan MG; Knaut H; Hille R
    J Biol Chem; 1996 Mar; 271(12):6771-80. PubMed ID: 8636099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The natural flavorprotein electron acceptor of trimethylamine dehydrogenase.
    Steenkamp DJ; Gallup M
    J Biol Chem; 1978 Jun; 253(12):4086-9. PubMed ID: 207689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways.
    Liffourrena AS; Salvano MA; Lucchesi GI
    Arch Microbiol; 2010 Jun; 192(6):471-6. PubMed ID: 20437165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trimethylamine dehydrogenase from a methylotrophic bacterium. I. Isolation and steady-state kinetics.
    Steenkamp DJ; Mallinson J
    Biochim Biophys Acta; 1976 May; 429(3):705-19. PubMed ID: 1268229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intramolecular electron transfer in trimethylamine dehydrogenase: a thermodynamic analysis.
    Falzon L; Davidson VL
    Biochemistry; 1996 Sep; 35(37):12111-8. PubMed ID: 8810917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of multiple ligand binding on kinetic isotope effects in PQQ-dependent methanol dehydrogenase.
    Hothi P; Basran J; Sutcliffe MJ; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3966-78. PubMed ID: 12667088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH and kinetic isotope effects on sarcosine oxidation by N-methyltryptophan oxidase.
    Ralph EC; Fitzpatrick PF
    Biochemistry; 2005 Mar; 44(8):3074-81. PubMed ID: 15723552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron transfer in trimethylamine dehydrogenase and electron-transferring flavoprotein.
    Scrutton NS; Basran J; Wilson EK; Chohan KK; Jang MH; Sutcliffe MJ; Hille R
    Biochem Soc Trans; 1999 Feb; 27(2):196-201. PubMed ID: 10093733
    [No Abstract]   [Full Text] [Related]  

  • 33. Oxidation-reduction properties of trimethylamine dehydrogenase: effect of inhibitor binding.
    Pace CP; Stankovich MT
    Arch Biochem Biophys; 1991 May; 287(1):97-104. PubMed ID: 1897998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectroscopic and kinetic characterization of the recombinant cytochrome c reductase fragment of nitrate reductase. Identification of the rate-limiting catalytic step.
    Ratnam K; Shiraishi N; Campbell WH; Hille R
    J Biol Chem; 1997 Jan; 272(4):2122-8. PubMed ID: 8999912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interaction of trimethylamine dehydrogenase and electron-transferring flavoprotein.
    Shi W; Mersfelder J; Hille R
    J Biol Chem; 2005 May; 280(21):20239-46. PubMed ID: 15760891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies of crystalline trimethylamine dehydrogenase in three oxidation states and in the presence of substrate and inhibitor.
    Bellamy HD; Lim LW; Mathews FS; Dunham WR
    J Biol Chem; 1989 Jul; 264(20):11887-92. PubMed ID: 2545689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of a flavin iminoquinone methide in the formation of 6-hydroxyflavin mononucleotide in trimethylamine dehydrogenase: a rationale for the existence of 8alpha-methyl and C6-linked covalent flavoproteins.
    Mewies M; Basran J; Packman LC; Hille R; Scrutton NS
    Biochemistry; 1997 Jun; 36(23):7162-8. PubMed ID: 9188716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An exposed tyrosine on the surface of trimethylamine dehydrogenase facilitates electron transfer to electron transferring flavoprotein: kinetics of transfer in wild-type and mutant complexes.
    Wilson EK; Huang L; Sutcliffe MJ; Mathews FS; Hille R; Scrutton NS
    Biochemistry; 1997 Jan; 36(1):41-8. PubMed ID: 8993316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic studies of the mechanism of carbon-hydrogen bond breakage by the heterotetrameric sarcosine oxidase of Arthrobacter sp. 1-IN.
    Harris RJ; Meskys R; Sutcliffe MJ; Scrutton NS
    Biochemistry; 2000 Feb; 39(6):1189-98. PubMed ID: 10684595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.