BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10224069)

  • 41. Suicide inhibition as a likely cause of variable specific activity in trimethylamine dehydrogenase from bacterium W3A1.
    Steenkamp DJ
    Biochem Biophys Res Commun; 1985 Oct; 132(1):352-9. PubMed ID: 4062933
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The pH dependence of kinetic isotope effects in monoamine oxidase A indicates stabilization of the neutral amine in the enzyme-substrate complex.
    Dunn RV; Marshall KR; Munro AW; Scrutton NS
    FEBS J; 2008 Aug; 275(15):3850-8. PubMed ID: 18573102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. I. Kinetic mechanism and pH dependence of kinetic parameters, coenzyme binding and substrate inhibition.
    Alvarez JA; Gelpí JL; Johnsen K; Bernard N; Delcour J; Clarke AR; Holbrook JJ; Cortés A
    Eur J Biochem; 1997 Feb; 244(1):203-12. PubMed ID: 9063465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insight into the chemistry of flavin reduction and oxidation in Escherichia coli dihydroorotate dehydrogenase obtained by rapid reaction studies.
    Palfey BA; Björnberg O; Jensen KF
    Biochemistry; 2001 Apr; 40(14):4381-90. PubMed ID: 11284694
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition by trimethylamine of methylamine oxidation by Paracoccus denitrificans and bacterium W3A1.
    Davidson VL; Kumar MA
    Biochim Biophys Acta; 1990 Apr; 1016(3):339-43. PubMed ID: 2331476
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic methods for the study of the enzyme systems of beta-oxidation.
    Reinsch J; Rojas C; McFarland JT
    Arch Biochem Biophys; 1983 Nov; 227(1):21-30. PubMed ID: 6639077
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.
    Yuan H; Xin Y; Hamelberg D; Gadda G
    J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. N-methyltryptophan oxidase from Escherichia coli: reaction kinetics with N-methyl amino acid and carbinolamine substrates.
    Khanna P; Schuman Jorns M
    Biochemistry; 2001 Feb; 40(5):1451-9. PubMed ID: 11170473
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stopped flow kinetic studies on reductive half-reaction of histamine dehydrogenase from Nocardioides simplex with histamine.
    Tsutsumi M; Tsujimura S; Shirai O; Kano K
    J Biochem; 2010 Jul; 148(1):47-54. PubMed ID: 20305273
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A mechanism for substrate-Induced formation of 6-hydroxyflavin mononucleotide catalyzed by C30A trimethylamine dehydrogenase.
    Lu X; Nikolic D; Mitchell DJ; van Breemen RB; Mersfelder JA; Hille R; Silverman RB
    Bioorg Med Chem Lett; 2003 Nov; 13(22):4129-32. PubMed ID: 14592522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rescuing of the hydride transfer reaction in the Glu312Asp variant of choline oxidase by a substrate analogue.
    Quaye O; Nguyen T; Gannavaram S; Pennati A; Gadda G
    Arch Biochem Biophys; 2010 Jul; 499(1-2):1-5. PubMed ID: 20447376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reductive and oxidative half-reactions of morphinone reductase from Pseudomonas putida M10: a kinetic and thermodynamic analysis.
    Craig DH; Moody PC; Bruce NC; Scrutton NS
    Biochemistry; 1998 May; 37(20):7598-607. PubMed ID: 9585575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coupled electron/proton transfer in complex flavoproteins: solvent kinetic isotope effect studies of electron transfer in xanthine oxidase and trimethylamine dehydrogenase.
    Hille R; Anderson RF
    J Biol Chem; 2001 Aug; 276(33):31193-201. PubMed ID: 11395485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laser flash photolysis study of intermolecular and intramolecular electron transfer in trimethylamine dehydrogenase.
    Hazzard JT; McIntire WS; Tollin G
    Biochemistry; 1991 May; 30(18):4559-64. PubMed ID: 2021648
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monomeric sarcosine oxidase: 2. Kinetic studies with sarcosine, alternate substrates, and a substrate analogue.
    Wagner MA; Jorns MS
    Biochemistry; 2000 Aug; 39(30):8825-9. PubMed ID: 10913293
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trimethylamine oxidation in liver tissue is not catalyzed by a molybdenum cofactor-dependent enzyme.
    Johnson JL
    Biofactors; 1988 Jul; 1(2):153-5. PubMed ID: 3255351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The reductive half-reaction of xanthine oxidase. Reaction with aldehyde substrates and identification of the catalytically labile oxygen.
    Xia M; Dempski R; Hille R
    J Biol Chem; 1999 Feb; 274(6):3323-30. PubMed ID: 9920873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial sarcosine oxidase: identification of novel substrates and a biradical reaction intermediate.
    Zeller HD; Hille R; Jorns MS
    Biochemistry; 1989 Jun; 28(12):5145-54. PubMed ID: 2475174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.