These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 102241)

  • 21. Functional recovery after lesions of the nervous system. IV. Structural correlates of recovery in adult subjects. Recovery of motor function in rhesus monkeys.
    Kuypers HG
    Neurosci Res Program Bull; 1974 Jun; 12(2):240-4. PubMed ID: 4211034
    [No Abstract]   [Full Text] [Related]  

  • 22. Effects of unilateral pyramidotomy on conditioned finger movement in monkey (Macaca irus).
    Hepp-Reymond MC; Wiesendanger M; Brunnert A; Mackel R; Unger C; Wespi J
    Brain Res; 1970 Dec; 24(3):544. PubMed ID: 4992850
    [No Abstract]   [Full Text] [Related]  

  • 23. Increased expression of the growth-associated protein 43 gene in the sensorimotor cortex of the macaque monkey after lesioning the lateral corticospinal tract.
    Higo N; Nishimura Y; Murata Y; Oishi T; Yoshino-Saito K; Takahashi M; Tsuboi F; Isa T
    J Comp Neurol; 2009 Oct; 516(6):493-506. PubMed ID: 19672995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of hand posture on corticospinal excitability during motor imagery: a transcranial magnetic stimulation study.
    Vargas CD; Olivier E; Craighero L; Fadiga L; Duhamel JR; Sirigu A
    Cereb Cortex; 2004 Nov; 14(11):1200-6. PubMed ID: 15142965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement.
    Duque J; Mazzocchio R; Dambrosia J; Murase N; Olivier E; Cohen LG
    Cereb Cortex; 2005 May; 15(5):588-93. PubMed ID: 15342437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of pyramidal lesions on manipulatory movements in the dog. An ontogenetic approach.
    Górska T; Zalewska-Walkowska M
    Acta Neurobiol Exp (Wars); 1982; 42(4-5):343-67. PubMed ID: 7184327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unilateral pyramidotomy in monkeys: effect on force and speed of a conditioned precision grip.
    Hepp-Reymond MC; Wiesendanger M
    Brain Res; 1972 Jan; 36(1):117-31. PubMed ID: 4621473
    [No Abstract]   [Full Text] [Related]  

  • 28. Effects of early versus late rehabilitative training on manual dexterity after corticospinal tract lesion in macaque monkeys.
    Sugiyama Y; Higo N; Yoshino-Saito K; Murata Y; Nishimura Y; Oishi T; Isa T
    J Neurophysiol; 2013 Jun; 109(12):2853-65. PubMed ID: 23515793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Task dependence of slowing after pyramidal lesions in monkeys.
    Laursen AM
    J Comp Physiol Psychol; 1977 Aug; 91(4):897-906. PubMed ID: 408382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of chronic epileptic foci on control of pyramidal tract neurons in monkeys.
    Wyler AR; Burchiel KJ
    Epilepsia; 1978 Dec; 19(6):547-54. PubMed ID: 104868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Failure to develop a precision grip in monkeys with unilateral neocortical lesions made in infancy.
    Passingham R; Perry H; Wilkinson F
    Brain Res; 1978 Apr; 145(2):410-4. PubMed ID: 416888
    [No Abstract]   [Full Text] [Related]  

  • 32. Operant control of precentral neurons in monkeys: evidence against open loop control.
    Wyler AR; Burchiel KJ; Robbins CA
    Brain Res; 1979 Jul; 171(1):29-39. PubMed ID: 111771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. III. Task-related responses and their functional role.
    Dubner R; Hoffman DS; Hayes RL
    J Neurophysiol; 1981 Sep; 46(3):444-64. PubMed ID: 7299428
    [No Abstract]   [Full Text] [Related]  

  • 34. Factors influencing accuracy of operant control of pyramidal tract neurons in monkey.
    Wyler AR; Burchiel KJ
    Brain Res; 1978 Aug; 152(2):418-21. PubMed ID: 98217
    [No Abstract]   [Full Text] [Related]  

  • 35. Operant control of precentral neurons: comparison of fast and slow pyramidal tract neurons.
    Wyler AR; Burchiel KJ; Robbins CA
    Exp Neurol; 1980 Aug; 69(2):430-3. PubMed ID: 7409057
    [No Abstract]   [Full Text] [Related]  

  • 36. Effects of medullary pyramidotomy in the monkey. I. Clinical and electromyographic abnormalities.
    Gilman S; Marco LA
    Brain; 1971; 94(3):495-514. PubMed ID: 5000052
    [No Abstract]   [Full Text] [Related]  

  • 37. Time-dependent effects of pyramidotomy in the operantly conditioned rats.
    Fanardjian VV; Gevorkyan OV; Mallina RK; Melik-Moussian AB; Meliksetyan IB
    Behav Brain Res; 2001 Aug; 122(2):139-43. PubMed ID: 11334644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Speed, accuracy, and strength of forelimb movement after unilateral pyramidotomy in rhesus monkeys.
    Beck CH; Chambers WW
    J Comp Physiol Psychol; 1970 Feb; 70(2):1-22. PubMed ID: 4992508
    [No Abstract]   [Full Text] [Related]  

  • 39. The effect of low pyramidal lesions on forelimb movements in the cat.
    Alstermark B; Isa T; Lundberg A; Pettersson LG; Tantisira B
    Neurosci Res; 1989 Oct; 7(1):71-5. PubMed ID: 2812571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Operant control of precentral neurons: comparison of pyramidal and non-pyrmidal tract neurons.
    Wyler AR; Robbins CA; Lange SC
    Brain Res; 1979 Sep; 174(1):188-90. PubMed ID: 114274
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.