BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 10224250)

  • 1. Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes.
    Przybyla-Zawislak B; Gadde DM; Ducharme K; McCammon MT
    Genetics; 1999 May; 152(1):153-66. PubMed ID: 10224250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in the IDH2 gene encoding the catalytic subunit of the yeast NAD+-dependent isocitrate dehydrogenase can be suppressed by mutations in the CIT1 gene encoding citrate synthase and other genes of oxidative metabolism.
    Gadde DM; McCammon MT
    Arch Biochem Biophys; 1997 Aug; 344(1):139-49. PubMed ID: 9244391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.
    McCammon MT; Epstein CB; Przybyla-Zawislak B; McAlister-Henn L; Butow RA
    Mol Biol Cell; 2003 Mar; 14(3):958-72. PubMed ID: 12631716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae.
    Cupp JR; McAlister-Henn L
    J Biol Chem; 1992 Aug; 267(23):16417-23. PubMed ID: 1644826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function.
    Liu Z; Butow RA
    Mol Cell Biol; 1999 Oct; 19(10):6720-8. PubMed ID: 10490611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unassembled subunit of NAD(+)-dependent isocitrate dehydrogenase is insoluble and covalently modified.
    Gadde DM; Yang E; McCammon MT
    Arch Biochem Biophys; 1998 Jun; 354(1):102-10. PubMed ID: 9633603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae.
    Cupp JR; McAlister-Henn L
    J Biol Chem; 1991 Nov; 266(33):22199-205. PubMed ID: 1939242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple cellular consequences of isocitrate dehydrogenase isozyme dysfunction.
    McCammon MT; McAlister-Henn L
    Arch Biochem Biophys; 2003 Nov; 419(2):222-33. PubMed ID: 14592466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two phenotypically compensating isocitrate dehydrogenases in Ralstonia eutropha.
    Wang ZX; Brämer C; Steinbüchel A
    FEMS Microbiol Lett; 2003 Oct; 227(1):9-16. PubMed ID: 14568142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants.
    Lancien M; Gadal P; Hodges M
    Plant J; 1998 Nov; 16(3):325-33. PubMed ID: 9881153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases.
    Haselbeck RJ; McAlister-Henn L
    J Biol Chem; 1993 Jun; 268(16):12116-22. PubMed ID: 8099357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a Histoplasma capsulatum cDNA that complements a mitochondrial NAD(+)-isocitrate dehydrogenase subunit I-deficient mutant of Saccharomyces cerevisiae.
    Johnson CH; McEwen JE
    Yeast; 1999 Jun; 15(9):799-804. PubMed ID: 10398348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutants of Saccharomyces cerevisiae with defects in acetate metabolism: isolation and characterization of Acn- mutants.
    McCammon MT
    Genetics; 1996 Sep; 144(1):57-69. PubMed ID: 8878673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation.
    Lemaitre T; Urbanczyk-Wochniak E; Flesch V; Bismuth E; Fernie AR; Hodges M
    Plant Physiol; 2007 Jul; 144(3):1546-58. PubMed ID: 17468208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in Proteus mirabilis.
    Alteri CJ; Himpsl SD; Engstrom MD; Mobley HL
    mBio; 2012 Oct; 3(6):. PubMed ID: 23111869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly and function of a cytosolic form of NADH-specific isocitrate dehydrogenase in yeast.
    Zhao WN; McAlister-Henn L
    J Biol Chem; 1996 Apr; 271(17):10347-52. PubMed ID: 8626605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and physiological effects of alterations in homologous isocitrate-binding sites of yeast NAD(+)-specific isocitrate dehydrogenase.
    Lin AP; McCammon MT; McAlister-Henn L
    Biochemistry; 2001 Nov; 40(47):14291-301. PubMed ID: 11714283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of [3-13C]pyruvate in TCA cycle mutants of yeast.
    Sumegi B; McCammon MT; Sherry AD; Keys DA; McAlister-Henn L; Srere PA
    Biochemistry; 1992 Sep; 31(37):8720-5. PubMed ID: 1390657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of NAD+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash.
    Asano T; Kurose N; Hiraoka N; Kawakita S
    J Biosci Bioeng; 1999; 88(3):258-63. PubMed ID: 16232608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular genetics of yeast TCA cycle isozymes.
    McAlister-Henn L; Small WC
    Prog Nucleic Acid Res Mol Biol; 1997; 57():317-39. PubMed ID: 9175438
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.