These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Light-induced de-epoxidation of violaxanthin in lettuce chloroPLASTS. III. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability. Siefermann D; Yamamoto HY Biochim Biophys Acta; 1974 Jul; 357(1):144-50. PubMed ID: 4414482 [No Abstract] [Full Text] [Related]
3. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase. Latowski D; Burda K; Strzałka K J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111 [TBL] [Abstract][Full Text] [Related]
6. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Latowski D; Akerlund HE; Strzałka K Biochemistry; 2004 Apr; 43(15):4417-20. PubMed ID: 15078086 [TBL] [Abstract][Full Text] [Related]
7. Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Goss R Planta; 2003 Sep; 217(5):801-12. PubMed ID: 12748855 [TBL] [Abstract][Full Text] [Related]
8. FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase. Büch K; Stransky H; Hager A FEBS Lett; 1995 Nov; 376(1-2):45-8. PubMed ID: 8521963 [TBL] [Abstract][Full Text] [Related]
9. [Purification and properties of N-acyl-amino acid amidohydrolases from Euglena gracilis]. Gründig CA Biomed Biochim Acta; 1985; 44(11-12):1579-90. PubMed ID: 3937524 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of stizolobinic acid and stizolobic acid in higher plants. Saito K; Komamine A Eur J Biochem; 1978 Jan; 82(2):385-92. PubMed ID: 624278 [No Abstract] [Full Text] [Related]
11. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Latowski D; Kruk J; Burda K; Skrzynecka-Jaskier M; Kostecka-Gugała A; Strzałka K Eur J Biochem; 2002 Sep; 269(18):4656-65. PubMed ID: 12230579 [TBL] [Abstract][Full Text] [Related]
12. 5'-deoxyadenosylcobalamin-dependent ribonucleotide reductase: a survey of its distribution. Gleason FK; Hogenkamp HP Biochim Biophys Acta; 1972 Sep; 277(3):466-70. PubMed ID: 4627085 [No Abstract] [Full Text] [Related]
13. Superoxide dismutases in photosynthetic organisms: absence of the cuprozinc enzyme in eukaryotic algae. Asada K; Kanematsu S; Uchida K Arch Biochem Biophys; 1977 Feb; 179(1):243-56. PubMed ID: 402888 [No Abstract] [Full Text] [Related]
14. Purification and some properties of glyoxylate reductase (NADP+) and its functional location in mitochondria in Euglena gracilis z. Yokota A; Haga S; Kitaoka S Biochem J; 1985 Apr; 227(1):211-6. PubMed ID: 3922357 [TBL] [Abstract][Full Text] [Related]
15. Evidence for the co-existence of glutathione reductase and trypanothione reductase in the non-trypanosomatid Euglenozoa: Euglena gracilis Z. Montrichard F; Le Guen F; Laval-Martin DL; Davioud-Charvet E FEBS Lett; 1999 Jan; 442(1):29-33. PubMed ID: 9923598 [TBL] [Abstract][Full Text] [Related]
16. Effect of monogalactosyldiacylglycerol and other thylakoid lipids on violaxanthin de-epoxidation in liposomes. Latowski D; Kostecka A; Strzałka K Biochem Soc Trans; 2000 Dec; 28(6):810-2. PubMed ID: 11171216 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of Euglena gracilis and wheat germ zinc RNA polymerases II by 1,10-phenanthroline acting as a chelating agent. Mazus B; Falchuk KH; Vallee BL Biochemistry; 1986 May; 25(10):2941-5. PubMed ID: 3087413 [TBL] [Abstract][Full Text] [Related]
18. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Goss R; Lohr M; Latowski D; Grzyb J; Vieler A; Wilhelm C; Strzalka K Biochemistry; 2005 Mar; 44(10):4028-36. PubMed ID: 15751979 [TBL] [Abstract][Full Text] [Related]
19. Purification and properties of uroporphyrinogen III synthase (co-synthetase) from Euglena gracilis. Hart GJ; Battersby AR Biochem J; 1985 Nov; 232(1):151-60. PubMed ID: 3936481 [TBL] [Abstract][Full Text] [Related]