These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 10225416)

  • 21. ATP hydrolysis by membrane-bound Escherichia coli F0F1 causes rotation of the gamma subunit relative to the beta subunits.
    Zhou Y; Duncan TM; Bulygin VV; Hutcheon ML; Cross RL
    Biochim Biophys Acta; 1996 Jul; 1275(1-2):96-100. PubMed ID: 8688454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Torsional elasticity and energetics of F1-ATPase.
    Czub J; Grubmüller H
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7408-13. PubMed ID: 21502534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The gamma subunit of F1 and the PVP protein of F0 (F0I) are components of the gate of the mitochondrial F0F1 H(+)-ATP synthase.
    Papa S; Guerrieri F; Zanotti F; Fiermonte M; Capozza G; Jirillo E
    FEBS Lett; 1990 Oct; 272(1-2):117-20. PubMed ID: 2172010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase.
    Yasuda R; Noji H; Yoshida M; Kinosita K; Itoh H
    Nature; 2001 Apr; 410(6831):898-904. PubMed ID: 11309608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subunit delta of H(+)-ATPases: at the interface between proton flow and ATP synthesis.
    Engelbrecht S; Junge W
    Biochim Biophys Acta; 1990 Feb; 1015(3):379-90. PubMed ID: 2154253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. H2O2-induced damage to beef heart mitochondria F0F1 ATP synthase complex: differential sensitivity of the F1 and F0 moieties.
    Lippe G; Londero D; Sala FD; Mavelli I
    Biochem Mol Biol Int; 1993 Aug; 30(6):1061-70. PubMed ID: 8220252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ATP synthase--a splendid molecular machine.
    Boyer PD
    Annu Rev Biochem; 1997; 66():717-49. PubMed ID: 9242922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ATP synthase (F0-F1) complex in oxidative phosphorylation.
    Issartel JP; Dupuis A; Garin J; Lunardi J; Michel L; Vignais PV
    Experientia; 1992 Apr; 48(4):351-62. PubMed ID: 1533842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Essentials for ATP synthesis by F1F0 ATP synthases.
    von Ballmoos C; Wiedenmann A; Dimroth P
    Annu Rev Biochem; 2009; 78():649-72. PubMed ID: 19489730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-stepped rotation of subunits gamma and epsilon in single molecules of F-ATPase as revealed by polarized, confocal fluorometry.
    Häsler K; Engelbrecht S; Junge W
    FEBS Lett; 1998 Apr; 426(3):301-4. PubMed ID: 9600255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple mechanism whereby the F1-ATPase motor rotates with near-perfect chemomechanical energy conversion.
    Saita E; Suzuki T; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9626-31. PubMed ID: 26195785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
    Böckmann RA; Grubmüller H
    Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the delta subunit in enhancing proton conduction through the F0 of the Escherichia coli F1F0 ATPase.
    Monticello RA; Brusilow WS
    J Bacteriol; 1994 Mar; 176(5):1383-9. PubMed ID: 8113178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly coupled ATP synthesis by F1-ATPase single molecules.
    Rondelez Y; Tresset G; Nakashima T; Kato-Yamada Y; Fujita H; Takeuchi S; Noji H
    Nature; 2005 Feb; 433(7027):773-7. PubMed ID: 15716957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits.
    Ariga T; Muneyuki E; Yoshida M
    Nat Struct Mol Biol; 2007 Sep; 14(9):841-6. PubMed ID: 17721548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of mild trypsin digestion of F1 on energy coupling in the mitochondrial ATP synthase.
    Xu T; Candita C; Papa S
    FEBS Lett; 1996 Nov; 397(2-3):308-12. PubMed ID: 8955369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy-linked binding of Pi is required for continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1 ATP synthase.
    Zharova TV; Vinogradov AD
    Biochemistry; 2006 Dec; 45(48):14552-8. PubMed ID: 17128994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic model of ATP synthase: pH dependence of the rate of ATP synthesis.
    Jain S; Nath S
    FEBS Lett; 2000 Jul; 476(3):113-7. PubMed ID: 10913596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.