These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10226046)

  • 1. Dioxygen-activating bio-inorganic model complexes.
    Liang HC; Dahan M; Karlin KD
    Curr Opin Chem Biol; 1999 Apr; 3(2):168-75. PubMed ID: 10226046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates.
    Costas M; Mehn MP; Jensen MP; Que L
    Chem Rev; 2004 Feb; 104(2):939-86. PubMed ID: 14871146
    [No Abstract]   [Full Text] [Related]  

  • 4. Mononuclear copper active-oxygen complexes.
    Itoh S
    Curr Opin Chem Biol; 2006 Apr; 10(2):115-22. PubMed ID: 16504568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature of the FeO2 bonding in myoglobin and hemoglobin: A new molecular paradigm.
    Shikama K
    Prog Biophys Mol Biol; 2006; 91(1-2):83-162. PubMed ID: 16005052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible dioxygen binding to hemerythrin.
    Wirstam M; Lippard SJ; Friesner RA
    J Am Chem Soc; 2003 Apr; 125(13):3980-7. PubMed ID: 12656634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dioxygen activation by mononuclear copper enzymes: insights from a tripodal ligand mimicking their Cu(M) coordination sphere.
    de la Lande A; Salahub D; Moliner V; GĂ©rard H; Piquemal JP; Parisel O
    Inorg Chem; 2009 Aug; 48(15):7003-5. PubMed ID: 19586039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen binding and activation by the complexes of PY2- and TPA-appended diphenylglycoluril receptors with copper and other metals.
    Sprakel VS; Feiters MC; Meyer-Klaucke W; Klopstra M; Brinksma J; Feringa BL; Karlin KD; Nolte RJ
    Dalton Trans; 2005 Nov; (21):3522-34. PubMed ID: 16234934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dioxygen activation at non-heme iron: insights from rapid kinetic studies.
    Korendovych IV; Kryatov SV; Rybak-Akimova EV
    Acc Chem Res; 2007 Jul; 40(7):510-21. PubMed ID: 17521158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen activation by nonheme iron(II) complexes: alpha-keto carboxylate versus carboxylate.
    Mehn MP; Fujisawa K; Hegg EL; Que L
    J Am Chem Soc; 2003 Jul; 125(26):7828-42. PubMed ID: 12823001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex.
    Prigge ST; Eipper BA; Mains RE; Amzel LM
    Science; 2004 May; 304(5672):864-7. PubMed ID: 15131304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions.
    Nam W
    Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities.
    Decker A; Solomon EI
    Curr Opin Chem Biol; 2005 Apr; 9(2):152-63. PubMed ID: 15811799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function correlations in oxygen activating non-heme iron enzymes.
    Neidig ML; Solomon EI
    Chem Commun (Camb); 2005 Dec; (47):5843-63. PubMed ID: 16317455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-mimicking galactose oxidase and hemocyanin, two dioxygen-processing copper proteins.
    Gamez P; Koval IA; Reedijk J
    Dalton Trans; 2004 Dec; (24):4079-88. PubMed ID: 15573156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dioxygen activation by mononuclear nonheme iron(II) complexes generates iron-oxygen intermediates in the presence of an NADH analogue and proton.
    Hong S; Lee YM; Shin W; Fukuzumi S; Nam W
    J Am Chem Soc; 2009 Oct; 131(39):13910-1. PubMed ID: 19746912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein environment facilitates O2 binding in non-heme iron enzyme. An insight from ONIOM calculations on isopenicillin N synthase (IPNS).
    Lundberg M; Morokuma K
    J Phys Chem B; 2007 Aug; 111(31):9380-9. PubMed ID: 17637052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of dioxygen binding process in iron(III) catechol dioxygenase: "oxygen activation" vs "substrate activation".
    Nakatani N; Nakao Y; Sato H; Sakaki S
    J Phys Chem B; 2009 Apr; 113(14):4826-36. PubMed ID: 19284795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and spectroscopy of copper-dioxygen complexes.
    Mirica LM; Ottenwaelder X; Stack TD
    Chem Rev; 2004 Feb; 104(2):1013-45. PubMed ID: 14871148
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.