These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10226184)

  • 1. Independent factor analysis.
    Attias H
    Neural Comput; 1999 May; 11(4):803-51. PubMed ID: 10226184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral Independent Component Analysis with noise modeling for M/EEG source separation.
    Ablin P; Cardoso JF; Gramfort A
    J Neurosci Methods; 2021 May; 356():109144. PubMed ID: 33771653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic ICA contrast maximisation using OJA's nonlinear PCA algorithm.
    Girolami M; Fyfe C
    Int J Neural Syst; 1997; 8(5-6):661-78. PubMed ID: 10065842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent vector analysis for source separation using a mixture of gaussians prior.
    Hao J; Lee I; Lee TW; Sejnowski TJ
    Neural Comput; 2010 Jun; 22(6):1646-73. PubMed ID: 20100076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear and noisy extension of independent component analysis: theory and its application to a pitch sensation model.
    Maeda S; Song WJ; Ishii S
    Neural Comput; 2005 Jan; 17(1):115-44. PubMed ID: 15563750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent component analysis in the presence of noise in fMRI.
    Cordes D; Nandy R
    Magn Reson Imaging; 2007 Nov; 25(9):1237-48. PubMed ID: 17509787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general probabilistic model for group independent component analysis and its estimation methods.
    Guo Y
    Biometrics; 2011 Dec; 67(4):1532-42. PubMed ID: 21517789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised learning applied in MER and ECG signals through Gaussians mixtures with the Expectation-Maximization algorithm and Variational Bayesian Inference.
    Vargas Cardona HD; Orozco ÁÁ; Álvarez MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4326-9. PubMed ID: 24110690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An algorithm for separation of mixed sparse and Gaussian sources.
    Akkalkotkar A; Brown KS
    PLoS One; 2017; 12(4):e0175775. PubMed ID: 28414814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective noise-suppressed and artifact-reduced reconstruction of SPECT data using a preconditioned alternating projection algorithm.
    Li S; Zhang J; Krol A; Schmidtlein CR; Vogelsang L; Shen L; Lipson E; Feiglin D; Xu Y
    Med Phys; 2015 Aug; 42(8):4872-87. PubMed ID: 26233214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets.
    Tresch MC; Cheung VC; d'Avella A
    J Neurophysiol; 2006 Apr; 95(4):2199-212. PubMed ID: 16394079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Markov model for blind image separation by a mean-field EM algorithm.
    Tonazzini A; Bedini L; Salerno E
    IEEE Trans Image Process; 2006 Feb; 15(2):473-82. PubMed ID: 16479817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A constrained EM algorithm for independent component analysis.
    Welling M; Weber M
    Neural Comput; 2001 Mar; 13(3):677-89. PubMed ID: 11244561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast ML estimation for the mixture of factor analyzers via an ECM algorithm.
    Zhao JH; Yu PL
    IEEE Trans Neural Netw; 2008 Nov; 19(11):1956-61. PubMed ID: 19000964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic-based EM algorithm for learning Gaussian mixture models.
    Pernkopf F; Bouchaffra D
    IEEE Trans Pattern Anal Mach Intell; 2005 Aug; 27(8):1344-8. PubMed ID: 16119273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An expectation-maximization method for spatio-temporal blind source separation using an AR-MOG source model.
    Hild KE; Attias HT; Nagarajan SS
    IEEE Trans Neural Netw; 2008 Mar; 19(3):508-19. PubMed ID: 18334368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals.
    Barbati G; Porcaro C; Zappasodi F; Rossini PM; Tecchio F
    Clin Neurophysiol; 2004 May; 115(5):1220-32. PubMed ID: 15066548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-enhanced convolutional neural networks.
    Audhkhasi K; Osoba O; Kosko B
    Neural Netw; 2016 Jun; 78():15-23. PubMed ID: 26700535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blind source separation and deconvolution: the dynamic component analysis algorithm.
    Attias H; Schreiner CE
    Neural Comput; 1998 Aug; 10(6):1373-424. PubMed ID: 9698349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixtures of probabilistic principal component analyzers.
    Tipping ME; Bishop CM
    Neural Comput; 1999 Feb; 11(2):443-82. PubMed ID: 9950739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.