These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 10227176)

  • 41. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2011 Apr; 17(2):78-84. PubMed ID: 21315167
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of a small, acid-soluble spore protein from Clostridium perfringens on the resistance properties of Bacillus subtilis spores.
    Leyva-Illades JF; Setlow B; Sarker MR; Setlow P
    J Bacteriol; 2007 Nov; 189(21):7927-31. PubMed ID: 17766414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Clostridium sporulation programs: diversity and preservation of endospore differentiation.
    Al-Hinai MA; Jones SW; Papoutsakis ET
    Microbiol Mol Biol Rev; 2015 Mar; 79(1):19-37. PubMed ID: 25631287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
    Udompijitkul P; Alnoman M; Banawas S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2014 Dec; 44():24-33. PubMed ID: 25084641
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth.
    Akhtar S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2008 Sep; 25(6):802-8. PubMed ID: 18620972
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A Clostridium perfringens mutant producing coatless spores by lysozyme-dependent germination].
    Cassier M; Ryter A
    Ann Inst Pasteur (Paris); 1971 Dec; 121(6):717-32. PubMed ID: 4337134
    [No Abstract]   [Full Text] [Related]  

  • 47. Characterization of the autolytic enzymes of Clostridium perfringens.
    Williamson R; Ward JB
    J Gen Microbiol; 1979 Oct; 114(2):349-54. PubMed ID: 44314
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Most of the propeptide is dispensable for stability and autoprocessing of the zymogen of the germination protease of spores of Bacillus species.
    Pedersen LB; Nessi C; Setlow P
    J Bacteriol; 1997 Mar; 179(5):1824-7. PubMed ID: 9045848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product.
    Rossocha M; Schultz-Heienbrok R; von Moeller H; Coleman JP; Saenger W
    Biochemistry; 2005 Apr; 44(15):5739-48. PubMed ID: 15823032
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Sporulation of Clostridium perfringens at different pH of the cultivation medium].
    Siniak KM; Volkova VP
    Izv Akad Nauk SSSR Biol; 1984; (6):865-74. PubMed ID: 6097606
    [No Abstract]   [Full Text] [Related]  

  • 51. Effect of sublethal heat treatment on the later stage of germination-to-outgrowth of Clostridium perfringens spores.
    Sakanoue H; Yasugi M; Miyake M
    Microbiol Immunol; 2018 Jun; 62(6):418-424. PubMed ID: 29727026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Lysozyme-proteolytic enzyme dependent germination of type E Clostridium botulinum spores].
    Sebald M; Ionesco H
    C R Acad Hebd Seances Acad Sci D; 1972 Nov; 275(19):2175-7. PubMed ID: 4630684
    [No Abstract]   [Full Text] [Related]  

  • 53. A Putative Amidase Endolysin Encoded by
    Sekiya H; Okada M; Tamai E; Shimamoto T; Shimamoto T; Nariya H
    Antibiotics (Basel); 2021 Mar; 10(3):. PubMed ID: 33804492
    [No Abstract]   [Full Text] [Related]  

  • 54. Reaffirmation of the validity of enzymatic cleavage of lithocholic acid from N-epsilon-lithocholyl-L-lysine and N-alpha-CBZ-N-epsilon-lithocholyl-L-lysine.
    Nair PP; Kessie G; Flanagan VP
    J Lipid Res; 1986 Aug; 27(8):905-9. PubMed ID: 2877042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biochemistry. Enzymes in coherent motion.
    Lu HP
    Science; 2012 Jan; 335(6066):300-1. PubMed ID: 22267804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination.
    Donnelly ML; Forster ER; Rohlfing AE; Shen A
    Biochem J; 2020 Apr; 477(8):1459-1478. PubMed ID: 32242623
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sporulation and Germination in Clostridial Pathogens.
    Shen A; Edwards AN; Sarker MR; Paredes-Sabja D
    Microbiol Spectr; 2019 Nov; 7(6):. PubMed ID: 31858953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural and functional analysis of the CspB protease required for Clostridium spore germination.
    Adams CM; Eckenroth BE; Putnam EE; DoubliƩ S; Shen A
    PLoS Pathog; 2013 Feb; 9(2):e1003165. PubMed ID: 23408892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens.
    Paredes-Sabja D; Setlow P; Sarker MR
    J Bacteriol; 2009 Apr; 191(8):2711-20. PubMed ID: 19218389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid.
    Paredes-Sabja D; Setlow B; Setlow P; Sarker MR
    J Bacteriol; 2008 Jul; 190(13):4648-59. PubMed ID: 18469104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.