BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 10227297)

  • 1. Binding of double-strand breaks in DNA by human Rad52 protein.
    Van Dyck E; Stasiak AZ; Stasiak A; West SC
    Nature; 1999 Apr; 398(6729):728-31. PubMed ID: 10227297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance.
    Boulton SJ; Jackson SP
    Nucleic Acids Res; 1996 Dec; 24(23):4639-48. PubMed ID: 8972848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical evidence for Ku-independent backup pathways of NHEJ.
    Wang H; Perrault AR; Takeda Y; Qin W; Wang H; Iliakis G
    Nucleic Acids Res; 2003 Sep; 31(18):5377-88. PubMed ID: 12954774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Telomere-related functions of yeast KU in the repair of bleomycin-induced DNA damage.
    Tam AT; Pike BL; Hammet A; Heierhorst J
    Biochem Biophys Res Commun; 2007 Jun; 357(3):800-3. PubMed ID: 17442269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rad52 and Ku bind to different DNA structures produced early in double-strand break repair.
    Ristic D; Modesti M; Kanaar R; Wyman C
    Nucleic Acids Res; 2003 Sep; 31(18):5229-37. PubMed ID: 12954758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells.
    Pierce AJ; Hu P; Han M; Ellis N; Jasin M
    Genes Dev; 2001 Dec; 15(24):3237-42. PubMed ID: 11751629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA.
    Lewis LK; Kirchner JM; Resnick MA
    Mol Cell Biol; 1998 Apr; 18(4):1891-902. PubMed ID: 9528760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells.
    Takata M; Sasaki MS; Sonoda E; Morrison C; Hashimoto M; Utsumi H; Yamaguchi-Iwai Y; Shinohara A; Takeda S
    EMBO J; 1998 Sep; 17(18):5497-508. PubMed ID: 9736627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres.
    Pike BL; Heierhorst J
    Mol Cell Biol; 2007 Sep; 27(18):6532-45. PubMed ID: 17636027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways.
    Boulton SJ; Jackson SP
    EMBO J; 1996 Sep; 15(18):5093-103. PubMed ID: 8890183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae.
    Yu X; Gabriel A
    Genetics; 2003 Mar; 163(3):843-56. PubMed ID: 12663527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae.
    Milne GT; Jin S; Shannon KB; Weaver DT
    Mol Cell Biol; 1996 Aug; 16(8):4189-98. PubMed ID: 8754818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences.
    Ma JL; Kim EM; Haber JE; Lee SE
    Mol Cell Biol; 2003 Dec; 23(23):8820-8. PubMed ID: 14612421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase.
    Lee KJ; Saha J; Sun J; Fattah KR; Wang SC; Jakob B; Chi L; Wang SY; Taucher-Scholz G; Davis AJ; Chen DJ
    Nucleic Acids Res; 2016 Feb; 44(4):1732-45. PubMed ID: 26712563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms.
    Clikeman JA; Khalsa GJ; Barton SL; Nickoloff JA
    Genetics; 2001 Feb; 157(2):579-89. PubMed ID: 11156980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosomal double-strand break repair in Ku80-deficient cells.
    Liang F; Romanienko PJ; Weaver DT; Jeggo PA; Jasin M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8929-33. PubMed ID: 8799130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of HDF1 (Ku70) and HDF2 (Ku80) on spontaneous and DNA damage-induced intrachromosomal recombination in Saccharomyces cerevisiae.
    Cervelli T; Galli A
    Mol Gen Genet; 2000 Sep; 264(1-2):56-63. PubMed ID: 11016833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of Ku80 in microhomology-mediated end joining for DNA double-strand breaks in vivo.
    Katsura Y; Sasaki S; Sato M; Yamaoka K; Suzukawa K; Nagasawa T; Yokota J; Kohno T
    DNA Repair (Amst); 2007 May; 6(5):639-48. PubMed ID: 17236818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination.
    Siede W; Friedl AA; Dianova I; Eckardt-Schupp F; Friedberg EC
    Genetics; 1996 Jan; 142(1):91-102. PubMed ID: 8770587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.