BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10227465)

  • 1. Degradation of composite materials composed of tricalcium phosphate and a new type of block polyester containing a poly(L-lactic acid) segment.
    Imai Y; Nagai M; Watanabe M
    J Biomater Sci Polym Ed; 1999; 10(4):421-32. PubMed ID: 10227465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of blending tricalcium phosphate on hydrolytic degradation of a block polyester containing poly(L-lactic acid) segment.
    Imai Y; Fukuzawa A; Watanabe M
    J Biomater Sci Polym Ed; 1999; 10(7):773-86. PubMed ID: 10426231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for biodegradation of composite materials made of polyesters and tricalcium phosphates.
    Pan J; Han X; Niu W; Cameron RE
    Biomaterials; 2011 Mar; 32(9):2248-55. PubMed ID: 21186057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties.
    Zheng X; Zhou S; Yu X; Li X; Feng B; Qu S; Weng J
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):170-80. PubMed ID: 18161831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites.
    Kobayashi S; Sakamoto K
    J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures].
    Li X; Zou J; Zhu G; Qi X; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the in vitro degradation properties of poly(L-lactic acid)/beta-tricalcuim phosphate (PLLA/beta-TCP) scaffold under dynamic loading.
    Kang Y; Yao Y; Yin G; Huang Z; Liao X; Xu X; Zhao G
    Med Eng Phys; 2009 Jun; 31(5):589-94. PubMed ID: 19131266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H
    Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolytic degradation of the coral/poly(DL-lactic acid) bioresorbable material.
    Li S; Vert M
    J Biomater Sci Polym Ed; 1996; 7(9):817-27. PubMed ID: 8773885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of bone defect in caprine tibia using a laminated scaffold with bone marrow stromal cells loaded poly (L-lactic acid)/β-tricalcium phosphate.
    Huang J; Zhang L; Chu B; Peng X; Tang S
    Artif Organs; 2011 Jan; 35(1):49-57. PubMed ID: 20946293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning.
    Siqueira L; Passador FR; Costa MM; Lobo AO; Sousa E
    Mater Sci Eng C Mater Biol Appl; 2015; 52():135-43. PubMed ID: 25953550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo degradation studies of a novel linear copolymer of lactide and ethylphosphate.
    Chaubal MV; Su G; Spicer E; Dang W; Branham KE; English JP; Zhao Z
    J Biomater Sci Polym Ed; 2003; 14(1):45-61. PubMed ID: 12635770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro degradation of porous poly(L-lactic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Aug; 21(15):1595-605. PubMed ID: 10885732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA).
    Ehrenfried LM; Patel MH; Cameron RE
    J Mater Sci Mater Med; 2008 Jan; 19(1):459-66. PubMed ID: 17607516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.