These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 1022834)
1. A condition for the extinction of a branching process with an absorbing lower barrier. Schuh HJ J Math Biol; 1976 Nov; 3(3-4):271-87. PubMed ID: 1022834 [TBL] [Abstract][Full Text] [Related]
2. A reconsideration of Galton's problem (using a two-sex population). Hull DM Theor Popul Biol; 1998 Oct; 54(2):105-16. PubMed ID: 9733653 [TBL] [Abstract][Full Text] [Related]
3. Genetic drift in populations governed by a Galton-Watson branching process. Burden CJ; Simon H Theor Popul Biol; 2016 Jun; 109():63-74. PubMed ID: 27018000 [TBL] [Abstract][Full Text] [Related]
4. Populations in environments with a soft carrying capacity are eventually extinct. Jagers P; Zuyev S J Math Biol; 2020 Sep; 81(3):845-851. PubMed ID: 32816105 [TBL] [Abstract][Full Text] [Related]
6. Optimization and phenotype allocation. Jost J; Wang Y Bull Math Biol; 2014 Jan; 76(1):184-200. PubMed ID: 24233909 [TBL] [Abstract][Full Text] [Related]
7. Asymptotic rates of growth of the extinction probability of a mutant gene. Hoppe FM J Math Biol; 1992; 30(6):547-66. PubMed ID: 1640178 [TBL] [Abstract][Full Text] [Related]
8. First passage time for a supercritical Galton-Watson process restricted to the non-extinction set. Gadag VG J Theor Biol; 1981 Dec; 93(3):585-9. PubMed ID: 7341867 [No Abstract] [Full Text] [Related]
9. The bisexual branching process with population-size dependent mating as a mathematical model to describe phenomena concerning to inhabit or re-inhabit environments with animal species. Mota M; del Puerto I; Ramos A Math Biosci; 2007 Mar; 206(1):120-7. PubMed ID: 16197966 [TBL] [Abstract][Full Text] [Related]
10. A branching process, its application in biology: influence of demographic parameters on the social structure in mammal groups. Caron-Lormier G; Masson JP; Ménard N; Pierre JS J Theor Biol; 2006 Feb; 238(3):564-74. PubMed ID: 16046224 [TBL] [Abstract][Full Text] [Related]
11. The critical domain size of stochastic population models. Reimer JR; Bonsall MB; Maini PK J Math Biol; 2017 Feb; 74(3):755-782. PubMed ID: 27395043 [TBL] [Abstract][Full Text] [Related]
12. Robustness against extinction by stochastic sex determination in small populations. Schneider DM; do Carmo E; Bar-Yam Y; de Aguiar MA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041104. PubMed ID: 23214526 [TBL] [Abstract][Full Text] [Related]
13. Mutation in populations governed by a Galton-Watson branching process. Burden CJ; Wei Y Theor Popul Biol; 2018 Mar; 120():52-61. PubMed ID: 29233675 [TBL] [Abstract][Full Text] [Related]
14. Coalescence in the diffusion limit of a Bienaymé-Galton-Watson branching process. Burden CJ; Soewongsono AC Theor Popul Biol; 2019 Dec; 130():50-59. PubMed ID: 31585138 [TBL] [Abstract][Full Text] [Related]
15. Finite-size scaling of survival probability in branching processes. Garcia-Millan R; Font-Clos F; Corral Á Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042122. PubMed ID: 25974453 [TBL] [Abstract][Full Text] [Related]
16. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence. Maliyoni M; Chirove F; Gaff HD; Govinder KS Bull Math Biol; 2017 Sep; 79(9):1999-2021. PubMed ID: 28707219 [TBL] [Abstract][Full Text] [Related]
17. Branching process approach for epidemics in dynamic partnership network. Lashari AA; Trapman P J Math Biol; 2018 Jan; 76(1-2):265-294. PubMed ID: 28573467 [TBL] [Abstract][Full Text] [Related]
18. Host fragmentation and helminth parasites: hedging your bets against extinction. Bush AO; Kennedy CR Int J Parasitol; 1994 Dec; 24(8):1333-43. PubMed ID: 7729985 [TBL] [Abstract][Full Text] [Related]
19. Birth-death branching models. Application to African elephant populations. Corbacho C; Molina M; Mota M; Ramos A J Theor Biol; 2013 Sep; 332():108-16. PubMed ID: 23648183 [TBL] [Abstract][Full Text] [Related]
20. Weibull-type limiting distribution for replicative systems. Jo J; Fortin JY; Choi MY Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031123. PubMed ID: 21517470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]