These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1022834)

  • 21. Branching processes: their role in epidemiology.
    Jacob C
    Int J Environ Res Public Health; 2010 Mar; 7(3):1186-204. PubMed ID: 20617026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models.
    Block GL; Allen LJ
    Bull Math Biol; 2000 Mar; 62(2):199-228. PubMed ID: 10824427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical modeling in biological populations through branching processes. Application to salmonid populations.
    Molina M; Mota M; Ramos A
    J Math Biol; 2015 Jan; 70(1-2):197-212. PubMed ID: 24526259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predator-prey dynamics in a uniform medium lead to directed percolation and wave-train propagation.
    Agranovich A; Louzoun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031911. PubMed ID: 22587127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [On the extinction of populations with several types in a random environment].
    Bacaër N
    C R Biol; 2018 Mar; 341(3):145-151. PubMed ID: 29496395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The extinction of slowly evolving dynamical systems.
    Lasota A; Mackey MC
    J Math Biol; 1980 Dec; 10(4):333-45. PubMed ID: 6944430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Galton-Watson branching process as a quantitative tool in parasitology.
    Taneyhill DE; Dunn AM; Hatcher MJ
    Parasitol Today; 1999 Apr; 15(4):159-65. PubMed ID: 10322339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple stochastic theory of stem cell differentiation is not simultaneously consistent with crypt extinction probability and the expansion of mutated clones.
    Bjerknes M
    J Theor Biol; 1994 Jun; 168(4):349-65. PubMed ID: 8072296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The parasite capacity of the host population].
    Kozminskiĭ EV
    Parazitologiia; 2002; 36(1):48-59. PubMed ID: 11965643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary suicide and evolution of dispersal in structured metapopulations.
    Gyllenberg M; Parvinen K; Dieckmann U
    J Math Biol; 2002 Aug; 45(2):79-105. PubMed ID: 12181600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple extinction routes in stochastic population models.
    Gottesman O; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021140. PubMed ID: 22463185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extinction times for a birth-death process with two phases.
    Ross JV; Pollett PK
    Math Biosci; 2006 Aug; 202(2):310-22. PubMed ID: 16624337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Population growth and the multi-type Galton-Watson process.
    Seneta E
    Nature; 1970 Feb; 225(5234):766. PubMed ID: 5412787
    [No Abstract]   [Full Text] [Related]  

  • 34. On the path to extinction.
    Jagers P; Klebaner FC; Sagitov S
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6107-11. PubMed ID: 17405862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On a periodic-like behavior of a delayed density-dependent branching process.
    Fujimagari T
    Math Biosci; 2007 Mar; 206(1):128-33. PubMed ID: 17070864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics.
    Hindersin L; Traulsen A
    PLoS Comput Biol; 2015 Nov; 11(11):e1004437. PubMed ID: 26544962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A stochastic branching model with formation of subunits applied to the growth of intestinal crypts.
    Loeffler M; Grossmann B
    J Theor Biol; 1991 May; 150(2):175-91. PubMed ID: 1890854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expected population size in the generation-dependent branching process.
    Biggins JD; Gotz T
    J Appl Probab; 1987 Jun; 24(2):304-14. PubMed ID: 12341285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extinction probability, regularity and asymptotic growth of Markovian populations.
    Lenz N
    J Appl Probab; 1981; 18(1):1-18. PubMed ID: 12311750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Population extinction and survival in a hostile environment.
    Méndez V; Campos D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):022901. PubMed ID: 18352071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.