These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 10229525)

  • 1. Torsional stiffness of three spine constructs for thoracic scoliosis.
    Farley FA; Tseng KF; Moore DC
    J Spinal Disord; 1999 Apr; 12(2):120-5. PubMed ID: 10229525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Torsional stiffness of a single-rod construct using three instrumentation systems for thoracic scoliosis.
    Farley FA; Smith EA
    J Spinal Disord; 1999 Oct; 12(5):430-5. PubMed ID: 10549709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support.
    Zhang H; Johnston CE; Pierce WA; Ashman RB; Bronson DG; Haideri NF
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E934-40. PubMed ID: 17139209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel dual-rod screw for thoracoscopic anterior instrumentation: biomechanical evaluation compared with single-rod and double-screw/double-rod anterior constructs.
    Zhang H; Sucato DJ; Pierce WA; Ross D
    Spine (Phila Pa 1976); 2009 Mar; 34(5):E183-8. PubMed ID: 19247158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preventing distal pullout of posterior spine instrumentation in thoracic hyperkyphosis: a biomechanical analysis.
    Sun E; Alkalay R; Vader D; Snyder BD
    J Spinal Disord Tech; 2009 Jun; 22(4):270-7. PubMed ID: 19494747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems.
    Brodke DS; Gollogly S; Bachus KN; Alexander Mohr R; Nguyen BK
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1794-801. PubMed ID: 12923465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques.
    Espinoza-Larios A; Ames CP; Chamberlain RH; Sonntag VK; Dickman CA; Crawford NR
    Spine J; 2007; 7(2):194-204. PubMed ID: 17321969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation.
    Murakami H; Tsai KJ; Attallah-Wasif ES; Yamazaki K; Shimamura T; Hutton WC
    Spine (Phila Pa 1976); 2006 Apr; 31(9):967-71. PubMed ID: 16641771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique.
    Mahar AT; Bagheri R; Oka R; Kostial P; Akbarnia BA
    Spine J; 2008; 8(6):933-9. PubMed ID: 18082463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical testing of a single rod versus a double rod in a long-segment animal model.
    Wattenbarger JM; Herring JA; Bronson D; Ashman RB
    J Spinal Disord; 2001 Jun; 14(3):232-6. PubMed ID: 11389374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery.
    Yoon SH; Ugrinow VL; Upasani VV; Pawelek JB; Newton PO
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2173-8. PubMed ID: 18794758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of a transition rod may prevent proximal junctional kyphosis in the thoracic spine after scoliosis surgery: a finite element analysis.
    Cahill PJ; Wang W; Asghar J; Booker R; Betz RR; Ramsey C; Baran G
    Spine (Phila Pa 1976); 2012 May; 37(12):E687-95. PubMed ID: 22210013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anterior single-rod instrumentation of the thoracic and lumbar spine: saving levels.
    Lowe TG; Betz R; Lenke L; Clements D; Harms J; Newton P; Haher T; Merola A; Wenger D
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S208-16. PubMed ID: 14560194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Torsional rigidity of scoliosis constructs.
    Wood KB; Wentorf FA; Ogilvie JW; Kim KT
    Spine (Phila Pa 1976); 2000 Aug; 25(15):1893-8. PubMed ID: 10908931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws.
    Kuklo TR; Dmitriev AE; Cardoso MJ; Lehman RA; Erickson M; Gill NW
    Spine (Phila Pa 1976); 2008 Jul; 33(15):E482-7. PubMed ID: 18594445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The posterior tether in scoliosis.
    Jarvis JG; Ashman RB; Johnston CE; Herring JA
    Clin Orthop Relat Res; 1988 Feb; 227():126-34. PubMed ID: 3338202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static and dynamic analysis of five anterior instrumentation systems for thoracolumbar scoliosis.
    Shimamoto N; Kotani Y; Shono Y; Kadoya K; Abumi K; Minami A; Kaneda K
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1678-85. PubMed ID: 12897491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of end screw orientation on the stability of anterior instrumentation in cyclic lateral bending.
    Rodríguez-Olaverri JC; Hasharoni A; DeWal H; Nuzzo RM; Kummer FJ; Errico TJ
    Spine J; 2005; 5(5):554-7. PubMed ID: 16153585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine.
    Liljenqvist U; Hackenberg L; Link T; Halm H
    Acta Orthop Belg; 2001 Apr; 67(2):157-63. PubMed ID: 11383294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.