These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Stokes IA; Spence H; Aronsson DD; Kilmer N Spine (Phila Pa 1976); 1996 May; 21(10):1162-7. PubMed ID: 8727190 [TBL] [Abstract][Full Text] [Related]
7. The role of remodeling and asymmetric growth in vertebral wedging. Aronsson DD; Stokes IA; McBride C Stud Health Technol Inform; 2010; 158():11-5. PubMed ID: 20543392 [TBL] [Abstract][Full Text] [Related]
8. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae. Rizza R; Liu X J Biomech Eng; 2013 Aug; 135(8):81003. PubMed ID: 23722167 [TBL] [Abstract][Full Text] [Related]
9. In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion. Kettler A; Niemeyer T; Issler L; Merk U; Mahalingam M; Werner K; Claes L; Wilke HJ Clin Biomech (Bristol); 2006 Jun; 21(5):435-42. PubMed ID: 16442678 [TBL] [Abstract][Full Text] [Related]
10. Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading. Stokes IA; Gwadera J; Dimock A; Farnum CE; Aronsson DD J Orthop Res; 2005 Jan; 23(1):188-95. PubMed ID: 15607892 [TBL] [Abstract][Full Text] [Related]
11. Progression of vertebral wedging in an asymmetrically loaded rat tail model. Mente PL; Stokes IA; Spence H; Aronsson DD Spine (Phila Pa 1976); 1997 Jun; 22(12):1292-6. PubMed ID: 9201830 [TBL] [Abstract][Full Text] [Related]
12. Mechanical forces as predictors of healing during tibial lengthening by distraction osteogenesis. Aronson J; Harp JH Clin Orthop Relat Res; 1994 Apr; (301):73-9. PubMed ID: 8156700 [TBL] [Abstract][Full Text] [Related]
13. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis. Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203 [TBL] [Abstract][Full Text] [Related]
14. Mechanical modulation of vertebral and tibial growth: diurnal versus full-time loading. Stokes IA; Gwadera J; Dimock A; Aronsson DD Stud Health Technol Inform; 2002; 91():97-100. PubMed ID: 15457702 [TBL] [Abstract][Full Text] [Related]
15. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration. Baranto A; Ekström L; Holm S; Hellström M; Hansson HA; Swärd L Clin Biomech (Bristol); 2005 Dec; 20(10):1046-54. PubMed ID: 16102879 [TBL] [Abstract][Full Text] [Related]
16. The role of muscles and effects of load on growth. Stokes I; Gardner-Morse M Stud Health Technol Inform; 2002; 91():314-7. PubMed ID: 15457745 [TBL] [Abstract][Full Text] [Related]
18. The in-vivo effect of torque on growth in caudal vertebrae. Rizza R; Liu XC; Thometz J Stud Health Technol Inform; 2012; 176():209-12. PubMed ID: 22744492 [TBL] [Abstract][Full Text] [Related]
19. Vertebrae in compression: Mechanical behavior of arches and centra in the gray smooth-hound shark (Mustelus californicus). Porter ME; Long JH J Morphol; 2010 Mar; 271(3):366-75. PubMed ID: 19862836 [TBL] [Abstract][Full Text] [Related]
20. The implications of stress patterns in the vertebral body under axial support of an artificial implant. Palissery V; Mulholland RC; McNally DS Med Eng Phys; 2009 Sep; 31(7):833-7. PubMed ID: 19419899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]