These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10229529)

  • 1. Mechanical modulation of calf tail vertebral growth: implications for scoliosis progression.
    Aronsson DD; Stokes IA; Rosovsky J; Spence H
    J Spinal Disord; 1999 Apr; 12(2):141-6. PubMed ID: 10229529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static versus dynamic loading in the mechanical modulation of vertebral growth.
    Akyuz E; Braun JT; Brown NA; Bachus KN
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E952-8. PubMed ID: 17139211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth plate chondrocyte enlargement modulated by mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    Stud Health Technol Inform; 2002; 88():378-81. PubMed ID: 15456065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical modulation of growth for the correction of vertebral wedge deformities.
    Mente PL; Aronsson DD; Stokes IA; Iatridis JC
    J Orthop Res; 1999 Jul; 17(4):518-24. PubMed ID: 10459757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical modulation of intervertebral disc thickness in growing rat tails.
    Stokes IA; Aronsson DD; Spence H; Iatridis JC
    J Spinal Disord; 1998 Jun; 11(3):261-5. PubMed ID: 9657554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical modulation of vertebral body growth. Implications for scoliosis progression.
    Stokes IA; Spence H; Aronsson DD; Kilmer N
    Spine (Phila Pa 1976); 1996 May; 21(10):1162-7. PubMed ID: 8727190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of remodeling and asymmetric growth in vertebral wedging.
    Aronsson DD; Stokes IA; McBride C
    Stud Health Technol Inform; 2010; 158():11-5. PubMed ID: 20543392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae.
    Rizza R; Liu X
    J Biomech Eng; 2013 Aug; 135(8):81003. PubMed ID: 23722167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion.
    Kettler A; Niemeyer T; Issler L; Merk U; Mahalingam M; Werner K; Claes L; Wilke HJ
    Clin Biomech (Bristol); 2006 Jun; 21(5):435-42. PubMed ID: 16442678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading.
    Stokes IA; Gwadera J; Dimock A; Farnum CE; Aronsson DD
    J Orthop Res; 2005 Jan; 23(1):188-95. PubMed ID: 15607892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progression of vertebral wedging in an asymmetrically loaded rat tail model.
    Mente PL; Stokes IA; Spence H; Aronsson DD
    Spine (Phila Pa 1976); 1997 Jun; 22(12):1292-6. PubMed ID: 9201830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical forces as predictors of healing during tibial lengthening by distraction osteogenesis.
    Aronson J; Harp JH
    Clin Orthop Relat Res; 1994 Apr; (301):73-9. PubMed ID: 8156700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical modulation of vertebral and tibial growth: diurnal versus full-time loading.
    Stokes IA; Gwadera J; Dimock A; Aronsson DD
    Stud Health Technol Inform; 2002; 91():97-100. PubMed ID: 15457702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration.
    Baranto A; Ekström L; Holm S; Hellström M; Hansson HA; Swärd L
    Clin Biomech (Bristol); 2005 Dec; 20(10):1046-54. PubMed ID: 16102879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of muscles and effects of load on growth.
    Stokes I; Gardner-Morse M
    Stud Health Technol Inform; 2002; 91():314-7. PubMed ID: 15457745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    J Bone Joint Surg Am; 2002 Oct; 84(10):1842-8. PubMed ID: 12377917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in-vivo effect of torque on growth in caudal vertebrae.
    Rizza R; Liu XC; Thometz J
    Stud Health Technol Inform; 2012; 176():209-12. PubMed ID: 22744492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebrae in compression: Mechanical behavior of arches and centra in the gray smooth-hound shark (Mustelus californicus).
    Porter ME; Long JH
    J Morphol; 2010 Mar; 271(3):366-75. PubMed ID: 19862836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The implications of stress patterns in the vertebral body under axial support of an artificial implant.
    Palissery V; Mulholland RC; McNally DS
    Med Eng Phys; 2009 Sep; 31(7):833-7. PubMed ID: 19419899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.