These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10230135)

  • 1. Bone image segmentation.
    Liu ZQ; Liew HL; Clement JG; Thomas CD
    IEEE Trans Biomed Eng; 1999 May; 46(5):565-73. PubMed ID: 10230135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone feature analysis using image processing techniques.
    Liu ZQ; Austin T; Thomas CD; Clement JG
    Comput Biol Med; 1996 Jan; 26(1):65-76. PubMed ID: 8654054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements.
    Basillais A; Bensamoun S; Chappard C; Brunet-Imbault B; Lemineur G; Ilharreborde B; Ho Ba Tho MC; Benhamou CL
    J Orthop Sci; 2007 Mar; 12(2):141-8. PubMed ID: 17393269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Microradiographic studies on the mineralization of normal and pathologic bone tissue].
    Heuck F
    Radiologe; 1969 May; 9(5):142-54. PubMed ID: 4909397
    [No Abstract]   [Full Text] [Related]  

  • 5. Joint segmentation of bones and muscles using an intensity and histogram-based energy minimization approach.
    Pérez-Carrasco JA; Acha B; Suárez-Mejías C; López-Guerra JL; Serrano C
    Comput Methods Programs Biomed; 2018 Mar; 156():85-95. PubMed ID: 29428079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automated segmentation of a hip joint using the patient-specific optimal thresholding and watershed algorithm.
    Kim JJ; Nam J; Jang IG
    Comput Methods Programs Biomed; 2018 Feb; 154():161-171. PubMed ID: 29249340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypermineralized lamellae below the bone surface: a quantitative microradiographic study.
    Nyssen-Behets C; Arnould V; Dhem A
    Bone; 1994; 15(6):685-9. PubMed ID: 7873298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro 3D reconstruction of long bones using B-scan image processing.
    Migeon B; Marché P
    Med Biol Eng Comput; 1997 Jul; 35(4):369-72. PubMed ID: 9327614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative data analysis for live imaging of bone.].
    Seno S
    Clin Calcium; 2018; 28(2):193-200. PubMed ID: 29371484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative bone metastases analysis based on image segmentation.
    Erdi YE; Humm JL; Imbriaco M; Yeung H; Larson SM
    J Nucl Med; 1997 Sep; 38(9):1401-6. PubMed ID: 9293797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections.
    Engelke K; Graeff W; Meiss L; Hahn M; Delling G
    Invest Radiol; 1993 Apr; 28(4):341-9. PubMed ID: 7683009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone mass determination from microradiographs by computer-assisted videodensitometry. I. Methodology.
    Strid KG; Kälebo P
    Acta Radiol; 1988; 29(4):465-72. PubMed ID: 3408609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of image segmentation algorithms on microscopic image data.
    Beneš M; Zitová B
    J Microsc; 2015 Jan; 257(1):65-85. PubMed ID: 25233873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved segmentation method for in vivo microCT imaging.
    Waarsing JH; Day JS; Weinans H
    J Bone Miner Res; 2004 Oct; 19(10):1640-50. PubMed ID: 15355559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of bone CT images and assessment of bone structure using measures of complexity.
    Saparin P; Thomsen JS; Kurths J; Beller G; Gowin W
    Med Phys; 2006 Oct; 33(10):3857-73. PubMed ID: 17089850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of GVF snake model in segmentation of whole body bone SPECT image].
    Zhu C; Tian L; Chen P; Wang L; Ye G; Mao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):27-9. PubMed ID: 18435250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic and hierarchical segmentation of the human skeleton in CT images.
    Fu Y; Liu S; Li H; Yang D
    Phys Med Biol; 2017 Apr; 62(7):2812-2833. PubMed ID: 28195561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized segmentation of whole-body bone scintigrams and its use in automated diagnostics.
    Sajn L; Kukar M; Kononenko I; Milcinski M
    Comput Methods Programs Biomed; 2005 Oct; 80(1):47-55. PubMed ID: 16040153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new algorithm to improve assessment of cortical bone geometry in pQCT.
    Cervinka T; Sievänen H; Lala D; Cheung AM; Giangregorio L; Hyttinen J
    Bone; 2015 Dec; 81():721-730. PubMed ID: 26428659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Advantages and Application Prospects of Deep Learning in Image Recognition and Bone Age Assessment].
    Hu TH; Wan L; Liu TA; Wang MW; Chen T; Wang YH
    Fa Yi Xue Za Zhi; 2017 Dec; 33(6):629-634. PubMed ID: 29441773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.