BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 10230767)

  • 1. An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C]aspirin.
    Macdonald JM; LeBlanc DA; Haas AL; London RE
    Biochem Pharmacol; 1999 Jun; 57(11):1233-44. PubMed ID: 10230767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel mechanism of surface catalysis of protein adduct formation. NMR studies of the acetylation of ubiquitin.
    Macdonald JM; Haas AL; London RE
    J Biol Chem; 2000 Oct; 275(41):31908-13. PubMed ID: 10906321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR study of the sites of human hemoglobin acetylated by aspirin.
    Xu AS; Macdonald JM; Labotka RJ; London RE
    Biochim Biophys Acta; 1999 Jul; 1432(2):333-49. PubMed ID: 10407155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy.
    Clore GM; Bax A; Driscoll PC; Wingfield PT; Gronenborn AM
    Biochemistry; 1990 Sep; 29(35):8172-84. PubMed ID: 2261471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assignment of amide 1H and 15N NMR resonances in detergent-solubilized M13 coat protein: a model for the coat protein dimer.
    Henry GD; Sykes BD
    Biochemistry; 1992 Jun; 31(23):5284-97. PubMed ID: 1606152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-epsilon-acetylation of porcine mature erythrocytes ubiquitin.
    Zhu DX; Xu LX; Zhu NZ; Briand G; Han KK
    Int J Biochem; 1985; 17(6):719-21. PubMed ID: 2993057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylation of human hemoglobin by methyl acetylphosphate. Evidence of broad regio-selectivity revealed by NMR studies.
    Xu AS; Labotka RJ; London RE
    J Biol Chem; 1999 Sep; 274(38):26629-32. PubMed ID: 10480863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C-NMR spectroscopy of acetyltyrosyl-guanidinated horse heart cytochrome c.
    Nieman RA; Gust D; Cronin JR
    Biochim Biophys Acta; 1982 May; 704(1):144-55. PubMed ID: 6284236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assignment of the aliphatic 1H and 13C resonances of the Bacillus subtilis glucose permease IIA domain using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy.
    Fairbrother WJ; Palmer AG; Rance M; Reizer J; Saier MH; Wright PE
    Biochemistry; 1992 May; 31(18):4413-25. PubMed ID: 1581296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination of complex carbohydrate structure by using carbonyl carbon resonances of peracetylated derivatives.
    Goux WJ
    Carbohydr Res; 1988 Dec; 184():47-65. PubMed ID: 3242816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations of primary and secondary structure of porcine ubiquitin. Its N epsilon-acetylated lysine derivative.
    Zhu DX; Zhang A; Zhu NC; Xu LX; Deutsch HF; Han KK
    Int J Biochem; 1986; 18(5):473-6. PubMed ID: 3011536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspirin acetylation of betaLys-82 of human hemoglobin. NMR study of acetylated hemoglobin Tsurumai.
    Xu AS; Ohba Y; Vida L; Labotka RJ; London RE
    Biochem Pharmacol; 2000 Oct; 60(7):917-22. PubMed ID: 10974199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids.
    Nikonowicz EP; Pardi A
    J Mol Biol; 1993 Aug; 232(4):1141-56. PubMed ID: 8396648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of difluorothionoacetyl-protein adducts by S-(1,1,2,2-tetrafluoroethyl)-L-cysteine metabolites: nucleophilic catalysis of stable lysyl adduct formation by histidine and tyrosine.
    Hayden PJ; Yang Y; Ward AJ; Dulik DM; McCann DJ; Stevens JL
    Biochemistry; 1991 Jun; 30(24):5935-43. PubMed ID: 1904276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: a mass spectrometric and isotope labeling study.
    Svensson J; Bergman AC; Adamson U; Blombäck M; Wallén H; Jörneskog G
    Biochem Biophys Res Commun; 2012 May; 421(2):335-42. PubMed ID: 22507986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation.
    Rajesh S; Sakamoto T; Iwamoto-Sugai M; Shibata T; Kohno T; Ito Y
    Biochemistry; 1999 Jul; 38(29):9242-53. PubMed ID: 10413498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin.
    Harding MM; Williams DH; Woolfson DN
    Biochemistry; 1991 Mar; 30(12):3120-8. PubMed ID: 1848787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C-nuclear magnetic resonance studies of 85% 13C-enriched amino acids and small peptides. pH effects on the chemical shifts, coupling constants, kinetics of cis-trans isomerisation and conformation aspects.
    Fermandjian S; Tran-Dinh ; Savrda J; Sala E; Mermet-Bouvier R; Bricas E; Fromageot P
    Biochim Biophys Acta; 1975 Aug; 399(2):313-38. PubMed ID: 240412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution.
    Miura T; Klaus W; Gsell B; Miyamoto C; Senn H
    J Mol Biol; 1999 Jul; 290(1):213-28. PubMed ID: 10388568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast internal main-chain dynamics of human ubiquitin.
    Schneider DM; Dellwo MJ; Wand AJ
    Biochemistry; 1992 Apr; 31(14):3645-52. PubMed ID: 1314645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.