These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 10230771)

  • 1. Role of ascorbic acid in transferrin-independent reduction and uptake of iron by U-937 cells.
    May JM; Qu ZC; Mendiratta S
    Biochem Pharmacol; 1999 Jun; 57(11):1275-82. PubMed ID: 10230771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells.
    Lane DJ; Lawen A
    J Biol Chem; 2008 May; 283(19):12701-8. PubMed ID: 18347019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin C recycling and function in human monocytic U-937 cells.
    May JM; Mendiratta S; Qu ZC; Loggins E
    Free Radic Biol Med; 1999 Jun; 26(11-12):1513-23. PubMed ID: 10401617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron.
    Randell EW; Parkes JG; Olivieri NF; Templeton DM
    J Biol Chem; 1994 Jun; 269(23):16046-53. PubMed ID: 8206903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects and transport kinetics of ascorbate derivatives in leukemic cell lines.
    Koh WS; Lee SJ; Lee H; Park C; Park MH; Kim WS; Yoon SS; Park K; Hong SI; Chung MH; Park CH
    Anticancer Res; 1998; 18(4A):2487-93. PubMed ID: 9703897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The uptake of ascorbic acid into human umbilical vein endothelial cells and its effect on oxidant insult.
    Ek A; Ström K; Cotgreave IA
    Biochem Pharmacol; 1995 Oct; 50(9):1339-46. PubMed ID: 7503781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.
    Jordan I; Kaplan J
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):875-9. PubMed ID: 7945215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron and gallium increase iron uptake from transferrin by human melanoma cells: further examination of the ferric ammonium citrate-activated iron uptake process.
    Richardson DR
    Biochim Biophys Acta; 2001 Apr; 1536(1):43-54. PubMed ID: 11335103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ascorbic acid and ferric ammonium citrate on iron uptake and storage in lens epithelial cells.
    Goralska M; Harned J; Fleisher LN; McGahan MC
    Exp Eye Res; 1998 Jun; 66(6):687-97. PubMed ID: 9657901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of ferric citrate uptake by human hepatoma cells.
    Trinder D; Morgan E
    Am J Physiol; 1998 Aug; 275(2):G279-86. PubMed ID: 9688655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction site of transferrin-dependent and transferrin-independent iron in cultured human fibroblasts.
    Oshiro S; Nakamura Y; Ishige R; Hori M; Nakajima H; Gahl WA
    J Biochem; 1994 May; 115(5):849-52. PubMed ID: 7961596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism.
    Lane DJ; Chikhani S; Richardson V; Richardson DR
    Biochim Biophys Acta; 2013 Jun; 1833(6):1527-41. PubMed ID: 23481043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human erythrocyte recycling of ascorbic acid: relative contributions from the ascorbate free radical and dehydroascorbic acid.
    May JM; Qu ZC; Cobb CE
    J Biol Chem; 2004 Apr; 279(15):14975-82. PubMed ID: 14752116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-transferrin iron uptake by trophoblast cells in culture. Significance of a NADH-dependent ferrireductase.
    Verrijt CE; Kroos MJ; Huijskes-Heins MI; van Eijk HG; van Dijk JP
    Placenta; 1998 Sep; 19(7):525-30. PubMed ID: 9778126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ascorbate in the reduction of transferrin-associated iron in endocytic vesicles.
    Escobar A; Gaete V; Núñez MT
    J Bioenerg Biomembr; 1992 Apr; 24(2):227-33. PubMed ID: 1526963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation.
    Badu-Boateng C; Naftalin RJ
    Free Radic Biol Med; 2019 Mar; 133():75-87. PubMed ID: 30268889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox, transferrin-independent, and receptor-mediated endocytosis iron uptake systems in cultured human fibroblasts.
    Oshiro S; Nakajima H; Markello T; Krasnewich D; Bernardini I; Gahl WA
    J Biol Chem; 1993 Oct; 268(29):21586-91. PubMed ID: 8408010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of ascorbate by endocrine-regulated and glucose-sensitive transport of dehydroascorbic acid in luteinized rat ovarian cells.
    Kodaman PH; Aten RF; Behrman HR
    Biol Reprod; 1998 Feb; 58(2):407-13. PubMed ID: 9475396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C; Golde DW; Houghton AN; Nualart F; Vera JC
    Cancer Res; 1997 Jun; 57(12):2529-37. PubMed ID: 9192836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.