BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10231014)

  • 1. Heat shock protein-based therapeutic strategies against human immunodeficiency virus type 1 infection.
    Brenner BG; Wainberg MA
    Infect Dis Obstet Gynecol; 1999; 7(1-2):80-90. PubMed ID: 10231014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock proteins: novel therapeutic tools for HIV-infection?
    Brenner BG; Wainberg Z
    Expert Opin Biol Ther; 2001 Jan; 1(1):67-77. PubMed ID: 11727548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of stress protein (hsp27 and hsp70) expression in CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-1.
    Wainberg Z; Oliveira M; Lerner S; Tao Y; Brenner BG
    Virology; 1997 Jul; 233(2):364-73. PubMed ID: 9217059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-shock proteins as powerful weapons in vaccine development.
    Bolhassani A; Rafati S
    Expert Rev Vaccines; 2008 Oct; 7(8):1185-99. PubMed ID: 18844593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibodies against heat shock proteins and cholesterol in HIV infection.
    Füst G; Beck Z; Bánhegyi D; Kocsis J; Bíró A; Prohászka Z
    Mol Immunol; 2005 Jan; 42(1):79-85. PubMed ID: 15488946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HIV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity.
    Di Cesare S; Poccia F; Mastino A; Colizzi V
    Immunology; 1992 Jun; 76(2):341-3. PubMed ID: 1634255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of HIV-1 replication and infectivity by expression of a fusion protein, VPR-anti-integrase single-chain variable fragment (SFv): intravirion molecular therapies.
    BouHamdan M; Kulkosky J; Duan LX; Pomerantz RJ
    J Hum Virol; 2000; 3(1):6-15. PubMed ID: 10774802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of cellular and humoral immune responses to human immunodeficiency virus type 1 Gag and Pol by a G/P-92 fusion protein expressing highly immunogenic Gag p17/p24 and Pol p51 antigens.
    Kmieciak D; Bolesta E; Naito T; Gzyl J; Kaneko Y; Kozbor D
    J Hum Virol; 2001; 4(6):306-16. PubMed ID: 12082397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock proteins as vaccine adjuvants in infections and cancer.
    Segal BH; Wang XY; Dennis CG; Youn R; Repasky EA; Manjili MH; Subjeck JR
    Drug Discov Today; 2006 Jun; 11(11-12):534-40. PubMed ID: 16713905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated levels of antibodies against 70 kDa heat shock proteins in the sera of patients with HIV infection.
    Kocsis J; Prohászka Z; Bíró A; Füst G; Bánhegyi D
    J Med Virol; 2003 Dec; 71(4):480-2. PubMed ID: 14556258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV escape from natural killer cytotoxicity: nef inhibits NKp44L expression on CD4+ T cells.
    Fausther-Bovendo H; Sol-Foulon N; Candotti D; Agut H; Schwartz O; Debré P; Vieillard V
    AIDS; 2009 Jun; 23(9):1077-87. PubMed ID: 19424050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rethinking globally relevant vaccine strategies to human immunodeficiency virus type-1.
    Gray CM; Puren AJ
    Arch Immunol Ther Exp (Warsz); 2000; 48(4):235-41. PubMed ID: 11059639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of antigen expression kinetics on the effectiveness of HIV-specific cytotoxic T lymphocytes.
    van Baalen CA; Guillon C; van Baalen M; Verschuren EJ; Boers PH; Osterhaus AD; Gruters RA
    Eur J Immunol; 2002 Sep; 32(9):2644-52. PubMed ID: 12207349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heat shock proteins and malignancies of the female genital tract].
    Piura B; Rabinovich A; Yavelsky V; Wolfson M
    Harefuah; 2002 Nov; 141(11):969-72, 1010, 1009. PubMed ID: 12476632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of heat shock protein-peptide complexes on tumor and infectious diseases immunity].
    Meng SD; Gao F; Tien P
    Sheng Wu Gong Cheng Xue Bao; 2000 Jul; 16(4):425-8. PubMed ID: 11051811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat shock protein expression independently predicts clinical outcome in prostate cancer.
    Cornford PA; Dodson AR; Parsons KF; Desmond AD; Woolfenden A; Fordham M; Neoptolemos JP; Ke Y; Foster CS
    Cancer Res; 2000 Dec; 60(24):7099-105. PubMed ID: 11156417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of HLA-A*3101-restricted cytotoxic T-lymphocyte response to human immunodeficiency virus type 1 (HIV-1) in patients with chronic HIV-1 infection.
    Borghan MA; Oka S; Takiguchi M
    Tissue Antigens; 2005 Oct; 66(4):305-13. PubMed ID: 16185326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of heat shock proteins and their receptors in the activation of the immune system.
    Singh-Jasuja H; Hilf N; Arnold-Schild D; Schild H
    Biol Chem; 2001 Apr; 382(4):629-36. PubMed ID: 11405225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CoVal fusions: a therapeutic vaccine platform using heat shock proteins to treat chronic viral infection and cancer.
    Neefe JR; Chu NR; Mizzen L
    Dev Biol (Basel); 2004; 116():193-200; discussion 229-36. PubMed ID: 15603193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.