BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10231130)

  • 1. Membrane recycling due to low and high rates of nerve stimulation at release sites in the amphibian (Bufo marinus) neuromuscular junction.
    Everett AW; Packard SJ; Cosby M; Milne RK
    Synapse; 1999 May; 32(2):110-8. PubMed ID: 10231130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of synaptic vesicle exocytosis and recycling during neuromuscular weakness produced in mice by 2,4-dithiobiuret.
    Xu YF; Autio D; Rheuben MB; Atchison WD
    J Neurophysiol; 2002 Dec; 88(6):3243-58. PubMed ID: 12466444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of extracellular calcium in exo- and endocytosis of synaptic vesicles at the frog motor nerve terminals.
    Zefirov AL; Abdrakhmanov MM; Mukhamedyarov MA; Grigoryev PN
    Neuroscience; 2006 Dec; 143(4):905-10. PubMed ID: 17000054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of synapses in the neurosecretory process during long-term facilitation at the lobster neuromuscular junction.
    Kapitsky S; Zueva L; Akbergenova Y; Bykhovskaia M
    Neuroscience; 2005; 134(4):1261-72. PubMed ID: 16084655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exocytosis and endocytosis of synaptic vesicles and functional roles of vesicle pools: lessons from the Drosophila neuromuscular junction.
    Kuromi H; Kidokoro Y
    Neuroscientist; 2005 Apr; 11(2):138-47. PubMed ID: 15746382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction.
    Betz WJ; Bewick GS
    J Physiol; 1993 Jan; 460():287-309. PubMed ID: 8387585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicle-associated proteins and quantal release at single active zones of amphibian (Bufo marinus) motor-nerve terminals.
    Macleod GT; Gan J; Bennett MR
    J Neurophysiol; 1999 Sep; 82(3):1133-46. PubMed ID: 10482733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial variability in release at the frog neuromuscular junction measured with FM1-43.
    Wu LG; Betz WJ
    Can J Physiol Pharmacol; 1999 Sep; 77(9):672-8. PubMed ID: 10566944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the fluorescent styryl dye FM1-43 to visualize synaptic vesicles exocytosis and endocytosis in motor nerve terminals.
    Amaral E; Guatimosim S; Guatimosim C
    Methods Mol Biol; 2011; 689():137-48. PubMed ID: 21153790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of living motor nerve ending of a frog by endocytotic fluorescent marker FM 1-43].
    Zefirov AL; Grigor'ev PN; Petrov AM; Minlebaev MG; Sitdikova GF
    Tsitologiia; 2003; 45(12):1163-71. PubMed ID: 15027348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ouabain evokes exocytosis dependent on ryanodine and mitochondrial calcium stores that is not followed by compensatory endocytosis at the neuromuscular junction.
    Amaral E; Leite LF; Gomez MV; Prado MA; Guatimosim C
    Neurochem Int; 2009 Nov; 55(6):406-13. PubMed ID: 19406178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of neuromuscular abnormalities in neurotrophin-3-deficient mice.
    Sheard PW; Bewick GS; Woolley AG; Shaw J; Fisher L; Fong SW; Duxson MJ
    Eur J Neurosci; 2010 Jan; 31(1):29-41. PubMed ID: 20092553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Schwann cell dynamics with respect to newly formed motor-nerve terminal branches on mature (Bufo marinus) muscle fibers.
    Dickens P; Hill P; Bennett MR
    J Neurocytol; 2003 May; 32(4):381-92. PubMed ID: 14724381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1-43.
    Quigley PA; Msghina M; Govind CK; Atwood HL
    J Neurophysiol; 1999 Jan; 81(1):356-70. PubMed ID: 9914295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural organization of the readily releasable pool of synaptic vesicles.
    Rizzoli SO; Betz WJ
    Science; 2004 Mar; 303(5666):2037-9. PubMed ID: 15044806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motorneurons require cysteine string protein-α to maintain the readily releasable vesicular pool and synaptic vesicle recycling.
    Rozas JL; Gómez-Sánchez L; Mircheski J; Linares-Clemente P; Nieto-González JL; Vázquez ME; Luján R; Fernández-Chacón R
    Neuron; 2012 Apr; 74(1):151-65. PubMed ID: 22500637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial organization and dynamic properties of neurotransmitter release sites in the enteric nervous system.
    Vanden Berghe P; Klingauf J
    Neuroscience; 2007 Mar; 145(1):88-99. PubMed ID: 17197103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicles in snake motor terminals comprise one functional pool and utilize a single recycling strategy at all stimulus frequencies.
    Lin MY; Teng H; Wilkinson RS
    J Physiol; 2005 Oct; 568(Pt 2):413-21. PubMed ID: 16123101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency dependence of synaptic vesicle exocytosis in aortic baroreceptor neurons and the role of group III mGluRs.
    Pamidimukkala J; Hay M
    Brain Res; 2004 May; 1006(2):215-24. PubMed ID: 15051525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
    Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B
    J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.