These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10231195)

  • 21. Turtle lung cells produce a melanization-stimulating activity that promotes melanocytic differentiation of avian neural crest cells.
    Hou L; Kwon BS
    Pigment Cell Res; 1995 Apr; 8(2):113-9. PubMed ID: 7544895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants.
    Svetic V; Hollway GE; Elworthy S; Chipperfield TR; Davison C; Adams RJ; Eisen JS; Ingham PW; Currie PD; Kelsh RN
    Development; 2007 Mar; 134(5):1011-22. PubMed ID: 17267445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A ventrally localized inhibitor of melanization in Xenopus laevis skin.
    Fukuzawa T; Ide H
    Dev Biol; 1988 Sep; 129(1):25-36. PubMed ID: 3410161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural crest cell migration and pigment pattern formation in urodele amphibians.
    Epperlein HH; Löfberg J; Olsson L
    Int J Dev Biol; 1996 Feb; 40(1):229-38. PubMed ID: 8735933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation of neural crest cells of Xenopus laevis in clonal culture.
    Akira E; Ide H
    Pigment Cell Res; 1987; 1(1):28-36. PubMed ID: 3507660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
    Burns AJ; Champeval D; Le Douarin NM
    Dev Biol; 2000 Mar; 219(1):30-43. PubMed ID: 10677253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of glycosaminoglycans in anuran pigment cell migration.
    Tucker RP
    J Embryol Exp Morphol; 1986 Mar; 92():145-64. PubMed ID: 3723060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives.
    Lister JA; Cooper C; Nguyen K; Modrell M; Grant K; Raible DW
    Dev Biol; 2006 Feb; 290(1):92-104. PubMed ID: 16364284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Late-emigrating trunk neural crest cells in turtle embryos generate an osteogenic ectomesenchyme in the plastron.
    Cebra-Thomas JA; Terrell A; Branyan K; Shah S; Rice R; Gyi L; Yin M; Hu Y; Mangat G; Simonet J; Betters E; Gilbert SF
    Dev Dyn; 2013 Nov; 242(11):1223-35. PubMed ID: 23904174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Melanophore lineage and clonal organization of the epidermis in Xenopus embryos as revealed by expression of a biogenic marker, GFP.
    Fukuzawa T
    Pigment Cell Res; 2000 Jun; 13(3):151-7. PubMed ID: 10885673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Fugu tyrp1 promoter directs specific GFP expression in zebrafish: tools to study the RPE and the neural crest-derived melanophores.
    Zou J; Beermann F; Wang J; Kawakami K; Wei X
    Pigment Cell Res; 2006 Dec; 19(6):615-27. PubMed ID: 17083488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Essential role for puma in development of postembryonic neural crest-derived cell lineages in zebrafish.
    Parichy DM; Turner JM; Parker NB
    Dev Biol; 2003 Apr; 256(2):221-41. PubMed ID: 12679099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta.
    Cebra-Thomas JA; Betters E; Yin M; Plafkin C; McDow K; Gilbert SF
    Evol Dev; 2007; 9(3):267-77. PubMed ID: 17501750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphogenesis of the cranial segments and distribution of neural crest in the embryos of the snapping turtle, Chelydra serpentina.
    Meier S; Packard DS
    Dev Biol; 1984 Apr; 102(2):309-23. PubMed ID: 6706002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of melanocyte-stimulating hormone on wild-type and white axolotl neural crest cells.
    Dean AD; Frost-Mason SK
    Biochem Biophys Res Commun; 1995 May; 210(2):239-45. PubMed ID: 7755596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial distribution of postotic crest cells defines the head/trunk interface of the vertebrate body: embryological interpretation of peripheral nerve morphology and evolution of the vertebrate head.
    Kuratani S
    Anat Embryol (Berl); 1997 Jan; 195(1):1-13. PubMed ID: 9006711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell surface carbohydrate involvement in controlling the adhesion and morphology of neural crest cells and melanophores of Xenopus laevis.
    Milos NC; Wilson HC
    J Exp Zool; 1986 May; 238(2):211-24. PubMed ID: 3086486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of pigment cell development in the periodic albino mutant of Xenopus.
    MacMillan GJ
    J Embryol Exp Morphol; 1979 Aug; 52():165-70. PubMed ID: 521748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules.
    Faraco CD; Vaz SA; Pástor MV; Erickson CA
    Dev Dyn; 2001 Mar; 220(3):212-25. PubMed ID: 11241830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-distance cue from emerging dermis stimulates neural crest melanoblast migration.
    Tosney KW
    Dev Dyn; 2004 Jan; 229(1):99-108. PubMed ID: 14699581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.