BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 10231535)

  • 1. (S)-Mandelate dehydrogenase from Pseudomonas putida: mechanistic studies with alternate substrates and pH and kinetic isotope effects.
    Lehoux IE; Mitra B
    Biochemistry; 1999 May; 38(18):5836-48. PubMed ID: 10231535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (S)-Mandelate dehydrogenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity.
    Lehoux IE; Mitra B
    Biochemistry; 1999 Aug; 38(31):9948-55. PubMed ID: 10433701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esters of mandelic acid as substrates for (S)-mandelate dehydrogenase from Pseudomonas putida: implications for the reaction mechanism.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Feb; 43(7):1883-90. PubMed ID: 14967029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transient intermediate in the reaction catalyzed by (S)-mandelate dehydrogenase from Pseudomonas putida.
    Dewanti AR; Mitra B
    Biochemistry; 2003 Nov; 42(44):12893-901. PubMed ID: 14596603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine 165/arginine 277 pair in (S)-mandelate dehydrogenase from Pseudomonas putida: role in catalysis and substrate binding.
    Xu Y; Dewanti AR; Mitra B
    Biochemistry; 2002 Oct; 41(41):12313-9. PubMed ID: 12369819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxamates as substrates and inhibitors for FMN-dependent 2-hydroxy acid dehydrogenases.
    Amar D; North P; Miskiniene V; Cénas N; Lederer F
    Bioorg Chem; 2002 Jun; 30(3):145-62. PubMed ID: 12406701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of arginine 277 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate binding and transition state stabilization.
    Lehoux IE; Mitra B
    Biochemistry; 2000 Aug; 39(33):10055-65. PubMed ID: 10955993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Aug; 43(33):10692-700. PubMed ID: 15311930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant.
    Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the K166R mutant.
    Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1995 Mar; 34(9):2788-97. PubMed ID: 7893690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly active, soluble mutant of the membrane-associated (S)-mandelate dehydrogenase from Pseudomonas putida.
    Xu Y; Mitra B
    Biochemistry; 1999 Sep; 38(38):12367-76. PubMed ID: 10493804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase.
    Polovnikova ES; McLeish MJ; Sergienko EA; Burgner JT; Anderson NL; Bera AK; Jordan F; Kenyon GL; Hasson MS
    Biochemistry; 2003 Feb; 42(7):1820-30. PubMed ID: 12590569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic nature of the active site of mandelate racemase.
    St Maurice M; Bearne SL
    Biochemistry; 2004 Mar; 43(9):2524-32. PubMed ID: 14992589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Paradigm for CH Bond Cleavage: Structural and Functional Aspects of Transition State Stabilization by Mandelate Racemase.
    Bearne SL; St Maurice M
    Adv Protein Chem Struct Biol; 2017; 109():113-160. PubMed ID: 28683916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbing the hydrophobic pocket of mandelate racemase to probe phenyl motion during catalysis.
    Siddiqi F; Bourque JR; Jiang H; Gardner M; St Maurice M; Blouin C; Bearne SL
    Biochemistry; 2005 Jun; 44(25):9013-21. PubMed ID: 15966725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. I. Kinetic mechanism and pH dependence of kinetic parameters, coenzyme binding and substrate inhibition.
    Alvarez JA; Gelpí JL; Johnsen K; Bernard N; Delcour J; Clarke AR; Holbrook JJ; Cortés A
    Eur J Biochem; 1997 Feb; 244(1):203-12. PubMed ID: 9063465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Salmonella typhimurium histidinol dehydrogenase: kinetic isotope effects and pH profiles.
    Grubmeyer C; Teng H
    Biochemistry; 1999 Jun; 38(22):7355-62. PubMed ID: 10353847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids.
    Fan CW; Xu GC; Ma BD; Bai YP; Zhang J; Xu JH
    J Biotechnol; 2015 Feb; 195():67-71. PubMed ID: 25449542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the reaction catalyzed by mandelate racemase: importance of electrophilic catalysis by glutamic acid 317.
    Mitra B; Kallarakal AT; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1995 Mar; 34(9):2777-87. PubMed ID: 7893689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.