These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10231549)

  • 21. The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited.
    Fujii S; Gasser V; Fuchs RP
    J Mol Biol; 2004 Aug; 341(2):405-17. PubMed ID: 15276832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase.
    Dohrmann PR; Correa R; Frisch RL; Rosenberg SM; McHenry CS
    Nucleic Acids Res; 2016 Feb; 44(3):1285-97. PubMed ID: 26786318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of bypass synthesis through an abasic site analog by DNA polymerase I.
    Paz-Elizur T; Takeshita M; Livneh Z
    Biochemistry; 1997 Feb; 36(7):1766-73. PubMed ID: 9048560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis.
    Tang M; Pham P; Shen X; Taylor JS; O'Donnell M; Woodgate R; Goodman MF
    Nature; 2000 Apr; 404(6781):1014-8. PubMed ID: 10801133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defining the position of the switches between replicative and bypass DNA polymerases.
    Fujii S; Fuchs RP
    EMBO J; 2004 Oct; 23(21):4342-52. PubMed ID: 15470496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida.
    Sidorenko J; Jatsenko T; Saumaa S; Teras R; Tark-Dame M; Hõrak R; Kivisaar M
    Mutat Res; 2011 Sep; 714(1-2):63-77. PubMed ID: 21763330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins.
    Bonner CA; Stukenberg PT; Rajagopalan M; Eritja R; O'Donnell M; McEntee K; Echols H; Goodman MF
    J Biol Chem; 1992 Jun; 267(16):11431-8. PubMed ID: 1534562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of translesion DNA synthesis by DNA polymerase II. Comparison to DNA polymerases I and III core.
    Paz-Elizur T; Takeshita M; Goodman M; O'Donnell M; Livneh Z
    J Biol Chem; 1996 Oct; 271(40):24662-9. PubMed ID: 8798733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replisome-mediated translesion synthesis by a cellular replicase.
    Nevin P; Gabbai CC; Marians KJ
    J Biol Chem; 2017 Aug; 292(33):13833-13842. PubMed ID: 28642369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elevated expression of DNA polymerase II increases spontaneous mutagenesis in Escherichia coli.
    Al Mamun AA
    Mutat Res; 2007 Dec; 625(1-2):29-39. PubMed ID: 17586534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exchange between Escherichia coli polymerases II and III on a processivity clamp.
    Kath JE; Chang S; Scotland MK; Wilbertz JH; Jergic S; Dixon NE; Sutton MD; Loparo JJ
    Nucleic Acids Res; 2016 Feb; 44(4):1681-90. PubMed ID: 26657641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directionality of DNA replication fork movement strongly affects the generation of spontaneous mutations in Escherichia coli.
    Yoshiyama K; Higuchi K; Matsumura H; Maki H
    J Mol Biol; 2001 Apr; 307(5):1195-206. PubMed ID: 11292335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UV- and MMS-induced mutagenesis of lambdaO(am)8 phage under nonpermissive conditions for phage DNA replication.
    Krwawicz J; Czajkowska A; Felczak M; Pietrzykowska I
    Acta Biochim Pol; 2003; 50(4):921-39. PubMed ID: 14739987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA polymerases and SOS mutagenesis: can one reconcile the biochemical and genetic data?
    Bridges B
    Bioessays; 2000 Oct; 22(10):933-7. PubMed ID: 10984719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro effects of a C4'-oxidized abasic site on DNA polymerases.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF
    Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis.
    Hedglin M; Pandey B; Benkovic SJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1777-86. PubMed ID: 26976599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of replicative and specialized DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains lacking one or all of SOS-inducible DNA polymerases to 26 chemicals.
    Kokubo K; Yamada M; Kanke Y; Nohmi T
    DNA Repair (Amst); 2005 Sep; 4(10):1160-71. PubMed ID: 16103022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ.
    Hirota K; Tsuda M; Mohiuddin ; Tsurimoto T; Cohen IS; Livneh Z; Kobayashi K; Narita T; Nishihara K; Murai J; Iwai S; Guilbaud G; Sale JE; Takeda S
    Nucleic Acids Res; 2016 Sep; 44(15):7242-50. PubMed ID: 27185888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.