These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 10231986)

  • 21. [The influence of diesel fuel oil on the number of bacteria, fungi, actinomycetes and soil microbial biomass].
    Michalcewicz W
    Rocz Panstw Zakl Hig; 1995; 46(1):91-7. PubMed ID: 7481509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of oil tank bottom sludge using microbial consortia.
    Gallego JL; García-Martínez MJ; Llamas JF; Belloch C; Peláez AI; Sánchez J
    Biodegradation; 2007 Jun; 18(3):269-81. PubMed ID: 16821101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings.
    Chaillan F; Chaîneau CH; Point V; Saliot A; Oudot J
    Environ Pollut; 2006 Nov; 144(1):255-65. PubMed ID: 16487636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Microbial growth and fuel tanks hazards (author's transl)].
    Odier E
    Ann Microbiol (Paris); 1976; 127B(2):213-25. PubMed ID: 1033726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial degradation of hydrocarbons in the environment.
    Leahy JG; Colwell RR
    Microbiol Rev; 1990 Sep; 54(3):305-15. PubMed ID: 2215423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.
    Cébron A; Beguiristain T; Bongoua-Devisme J; Denonfoux J; Faure P; Lorgeoux C; Ouvrard S; Parisot N; Peyret P; Leyval C
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13724-38. PubMed ID: 25616383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioremediation of benzene, toluene, ethylbenzene, xylenes-contaminated soil: a biopile pilot experiment.
    Genovese M; Denaro R; Cappello S; Di Marco G; La Spada G; Giuliano L; Genovese L; Yakimov MM
    J Appl Microbiol; 2008 Nov; 105(5):1694-702. PubMed ID: 19149767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ degradation of oil in a soil of the boreal region of the Northwest Territories.
    Westlake DW; Jobson AM; Cook FD
    Can J Microbiol; 1978 Mar; 24(3):254-60. PubMed ID: 647478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradation of A-fuel oil in soil samples with bacterial mixtures of Rhodococcus and Gordonia strains under low temperature conditions.
    Shintani M; Sugiyama K; Sakurai T; Yamada K; Kimbara K
    J Biosci Bioeng; 2019 Feb; 127(2):197-200. PubMed ID: 30082218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility.
    Bello-Akinosho M; Makofane R; Adeleke R; Thantsha M; Pillay M; Chirima GJ
    Biomed Res Int; 2016; 2016():5798593. PubMed ID: 27774456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Development of an oil-degrading biopreparation by activation of aboriginal hydrocarbon-oxidizing microflora].
    Pleshakova EV; Pozdniakova NN; Turkovskaia OV
    Prikl Biokhim Mikrobiol; 2005; 41(6):634-9. PubMed ID: 16358752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of photosynthetic bacteria and compost on degradation of petroleum products in soil].
    Mun TKh; Kirienko OA; Imranova EL
    Prikl Biokhim Mikrobiol; 2004; 40(2):214-9. PubMed ID: 15125200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation.
    Li X; Lin X; Li P; Liu W; Wang L; Ma F; Chukwuka KS
    J Hazard Mater; 2009 Dec; 172(2-3):601-5. PubMed ID: 19682791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrocarbon spills on Antarctic soils: effects and management.
    Aislabie JM; Balks MR; Foght JM; Waterhouse EJ
    Environ Sci Technol; 2004 Mar; 38(5):1265-74. PubMed ID: 15046325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes.
    Duarte GF; Rosado AS; Seldin L; de Araujo W; van Elsas JD
    Appl Environ Microbiol; 2001 Mar; 67(3):1052-62. PubMed ID: 11229891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Halotolerance and effect of salt on hydrophobicity in hydrocarbon-degrading bacteria.
    Longang A; Buck C; Kirkwood KM
    Environ Technol; 2016; 37(9):1133-40. PubMed ID: 26915518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil.
    Lu L; Huggins T; Jin S; Zuo Y; Ren ZJ
    Environ Sci Technol; 2014 Apr; 48(7):4021-9. PubMed ID: 24628095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential.
    Jiménez N; Viñas M; Guiu-Aragonés C; Bayona JM; Albaigés J; Solanas AM
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):823-34. PubMed ID: 21562979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel.
    Saadoun I
    J Basic Microbiol; 2002; 42(6):420-8. PubMed ID: 12442304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.