These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 102322)

  • 1. Effects of anti-NADPH-cytochrome c reductase and anti-cytochrome b5 antibodies on the hepatic and pulmonary microsomal metabolism and covalent binding of the pulmonary toxin 4-ipomeanol.
    Sasame HA; Gillette JR; Boyd MR
    Biochem Biophys Res Commun; 1978 Sep; 84(2):389-95. PubMed ID: 102322
    [No Abstract]   [Full Text] [Related]  

  • 2. Covalent binding of metabolites of 4-ipomeanol to rabbit pulmonary and hepatic microsomal proteins and to the enzymes of the pulmonary cytochrome P-450-dependent monooxygenase system.
    Slaughter SR; Statham CN; Philpot RM; Boyd MR
    J Pharmacol Exp Ther; 1983 Jan; 224(1):252-7. PubMed ID: 6848746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro studies on the metabolic activation of the pulmonary toxin, 4-ipomeanol, by rat lung and liver microsomes.
    Boyd MR; Burka LT; Wilson BJ; Sasame HA
    J Pharmacol Exp Ther; 1978 Dec; 207(3):677-86. PubMed ID: 32381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ratios of covalent binding to total metabolism of the pulmonary toxin, 4-ipomeanol, in vitro in pulmonary and hepatic microsomes, and the effects of pretreatments with phenobarbital or 3-methylcholanthrene.
    Boyd MR; Sasame HA; Franklin RB
    Biochem Biophys Res Commun; 1980 Apr; 93(4):1167-72. PubMed ID: 7396903
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence for molecular identity of microsomal and mitochondrial NADH-cytochrome b5 reductases of rat liver.
    Kuwahara S; Okada Y; Omura T
    J Biochem; 1978 Apr; 83(4):1049-59. PubMed ID: 96107
    [No Abstract]   [Full Text] [Related]  

  • 6. Characteristics of a microsomal dechlorination system.
    Van Dyke RA; Gandolfi AJ
    Mol Pharmacol; 1975 Nov; 11(6):809-17. PubMed ID: 813109
    [No Abstract]   [Full Text] [Related]  

  • 7. The in vitro formation of glutathione conjugates with the microsomally activated pulmonary bronchiolar aklylating agent and cytotoxin, 4-ipomeanol.
    Buckpitt AR; Boyd MR
    J Pharmacol Exp Ther; 1980 Oct; 215(1):97-103. PubMed ID: 7452496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical studies on electron transport proteins associated with cytochromes P-450 in steroidogenic tissues. II. Microsomal NADPH-cytochrome c reductase in the rat adrenal.
    Taira Y; Redick JA; Greenspan P; Baron J
    Biochim Biophys Acta; 1979 Mar; 583(2):148-58. PubMed ID: 109128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subfractionation of rat liver microsomes by immunoprecipitation and immunoadsorption methods.
    Kawajiri K; Ito A; Omura T
    J Biochem; 1977 Mar; 81(3):779-89. PubMed ID: 405382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of NADPH-cytochrome c reductase in microsomal hydroxylation reactions.
    Prough RA; Burke MD
    Arch Biochem Biophys; 1975 Sep; 170(1):160-8. PubMed ID: 809012
    [No Abstract]   [Full Text] [Related]  

  • 11. Solubilization of microsomal NADPH: cytochrome c reductase and cytochrome bs following the trypsin and pronase treatment.
    Kamiński Z; Kaniuga Z
    Bull Acad Pol Sci Biol; 1975; 23(2):83-6. PubMed ID: 806332
    [No Abstract]   [Full Text] [Related]  

  • 12. Immunochemical study on the pathway of electron flow in reduced nicotinamide adenine dinucleotide-dependent microsomal lipid peroxidation.
    Hirokata Y; Shigematsu A; Omura T
    J Biochem; 1978 Feb; 83(2):431-40. PubMed ID: 24622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between microsomal electron transfer pathways.
    Schenkman JB; Jansson I
    Adv Exp Med Biol; 1975; 58(00):387-404. PubMed ID: 239542
    [No Abstract]   [Full Text] [Related]  

  • 14. Immunochemical study on the participation of cytochrome b5 in drug oxidation reactions of mouse liver microsomes.
    Noshiro M; Harada N; Omura T
    Biochem Biophys Res Commun; 1979 Nov; 91(1):207-13. PubMed ID: 117806
    [No Abstract]   [Full Text] [Related]  

  • 15. Circadian changes of cytochrome P-450-dependent monooxygenase system in the rat liver.
    Plewka A; Czekaj P; Kamiński M; Plewka D
    Pol J Pharmacol Pharm; 1992; 44(6):655-61. PubMed ID: 1305961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purified NADPH cytochrome P-450 reductase. Interaction with hepatic microsomes and phospholipid vesicles.
    Gum JR; Strobel HW
    J Biol Chem; 1979 May; 254(10):4177-85. PubMed ID: 108270
    [No Abstract]   [Full Text] [Related]  

  • 17. Separation and purification of multiple forms of microsomal cytochrome P-450. Activities of different forms of cytochrome P-450 towards several compounds of environmental interest.
    Guengerich FP
    J Biol Chem; 1977 Jun; 252(11):3970-9. PubMed ID: 405388
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of metabolic activation in the pathogenesis of chemically induced pulmonary disease: mechanism of action of the lung-toxic furan, 4-ipomeanol.
    Boyd MR
    Environ Health Perspect; 1976 Aug; 16():127-38. PubMed ID: 1017416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species and strain differences in target organ alkylation and toxicity by 4-ipomeanol. Predictive value of covalent binding in studies of target organ toxicities by reactive metabolites.
    Dutcher JS; Boyd MR
    Biochem Pharmacol; 1979 Dec; 28(23):3367-72. PubMed ID: 119540
    [No Abstract]   [Full Text] [Related]  

  • 20. The relationship between the catalytic activities of rabbit pulmonary cytochrome P-450 isozymes and the lung-specific toxicity of the furan derivative, 4-ipomeanol.
    Wolf CR; Statham CN; McMenamin MG; Bend JR; Boyd MR; Philpot RM
    Mol Pharmacol; 1982 Nov; 22(3):738-44. PubMed ID: 7155130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.