These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1023235)

  • 1. Enkephalin and a potent analog facilitate maze performance after intraperitoneal administration in rats.
    Kastin AJ; Scollan EL; King MG; Schally AV; Coy DH
    Pharmacol Biochem Behav; 1976 Dec; 5(6):691-5. PubMed ID: 1023235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal administration of Met-enkephalin facilitates maze performance of adult rats.
    Kastin AJ; Kostrzewa RM; Schally AV; Coy DH
    Pharmacol Biochem Behav; 1980 Dec; 13(6):883-6. PubMed ID: 6111085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic administration of Met-enkephalin, (D-Ala2)-Met-enkephalin, beta-endorphin, and (D-Ala2)-beta-endorphin: effects on eating, drinking and activity measures in rats.
    King MG; Kastin AJ; Olson RD; Coy DH
    Pharmacol Biochem Behav; 1979 Oct; 11(4):407-11. PubMed ID: 523499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of enkephalins on training the white rat in a T-maze].
    Vlasova TI; Kamenskiĭ AA; Ashmarin IP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(5):870-6. PubMed ID: 6359758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of enkephalin analogues and morphine on brain acetylcholine release: differential reversal by naloxone and an opiate pentapeptide.
    Jhamandas K; Sutak M
    Br J Pharmacol; 1980; 71(1):201-10. PubMed ID: 7470736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of an enkephalin analog on complex learning in the rhesus monkey.
    Olson GA; Olson RD; Kastin AJ; Green MT; Roig-Smith R; Hill CW; Coy DH
    Pharmacol Biochem Behav; 1979 Sep; 11(3):341-5. PubMed ID: 116247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroanatomical focus for morphine and enkephalin-induced hypermotility.
    Pert A; Sivit C
    Nature; 1977 Feb; 265(5595):645-7. PubMed ID: 558514
    [No Abstract]   [Full Text] [Related]  

  • 8. Possible non-narcotic component to action of opiate peptides on tonic immobility.
    Olson RD; Kastin AJ; Lahoste GJ; Olson GA; Coy DH
    Pharmacol Biochem Behav; 1979 Dec; 11(6):705-8. PubMed ID: 538059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mu and delta receptors: their role in analgesia in the differential effects of opioid peptides on analgesia.
    Vaught JL; Rothman RB; Westfall TC
    Life Sci; 1982 Apr; 30(17):1443-55. PubMed ID: 6283293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antinociceptive action of supraspinal opioids results from an increase in descending inhibitory control: correlation of nociceptive behavior and c-fos expression.
    Gogas KR; Presley RW; Levine JD; Basbaum AI
    Neuroscience; 1991; 42(3):617-28. PubMed ID: 1659673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroencephalographic and behavioral effects of D-ala2-methionine-enkephalinamide and morphine in the rat.
    Tortella FC; Moreton JE; Khazan N
    J Pharmacol Exp Ther; 1978 Sep; 206(3):636-43. PubMed ID: 702326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroencephalographic and behavioral tolerance to and cross-tolerance between D-Ala2-methionine-enkephalinamide and morphine in the rat.
    Tortella FC; Moreton JE; Khazan N
    J Pharmacol Exp Ther; 1979 Aug; 210(2):174-9. PubMed ID: 222892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-dopaminergic mechanisms in the turning behavior evoked by intranigral opiates.
    Morelli M; Di Chiara G
    Brain Res; 1985 Aug; 341(2):350-9. PubMed ID: 2864100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analgesic effects of intraventricular morphine and enkephalins in nondependent and morphine-dependent rats.
    Brady LS; Holtzman SG
    J Pharmacol Exp Ther; 1982 Jul; 222(1):190-7. PubMed ID: 7201020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased acquisition of a complex appetitive task after MSH and MIF.
    Stratton LO; Kastin AJ
    Pharmacol Biochem Behav; 1975; 3(5):901-4. PubMed ID: 1801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intraventricular morphine and enkephalins on schedule-controlled behavior in nondependent, morphine-dependent and postdependent rats.
    Brady LS; Holtzman SG
    J Pharmacol Exp Ther; 1981 Nov; 219(2):344-51. PubMed ID: 7197301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enkephalin analog, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), inhibits the ethanol withdrawal-induced anxiety-like behavior in rats.
    Gibula-Bruzda E; Marszalek-Grabska M; Witkowska E; Izdebski J; Kotlinska JH
    Alcohol; 2015 May; 49(3):229-36. PubMed ID: 25716198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the behavioral effects of beta-endorphin and enkephalin analogs.
    Wei ET; Tseng LF; Loh HH; Li CH
    Life Sci; 1977 Aug; 21(3):321-7. PubMed ID: 895369
    [No Abstract]   [Full Text] [Related]  

  • 19. Behavioral effects of opioid peptides selective for mu or delta receptors. I. Morphine-like discriminative stimulus effects.
    Locke KW; Holtzman SG
    J Pharmacol Exp Ther; 1986 Sep; 238(3):990-6. PubMed ID: 3018230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the opioid receptor type mediating inhibition of rat gastric somatostatin secretion.
    McIntosh CH; Jia X; Kowk YN
    Am J Physiol; 1990 Dec; 259(6 Pt 1):G922-7. PubMed ID: 1979718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.