BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

966 related articles for article (PubMed ID: 10232609)

  • 21. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer.
    Gnanapragasam VJ; Leung HY; Pulimood AS; Neal DE; Robson CN
    Br J Cancer; 2001 Dec; 85(12):1928-36. PubMed ID: 11747336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prostate cancer progression, metastasis, and gene expression in transgenic mice.
    Perez-Stable C; Altman NH; Mehta PP; Deftos LJ; Roos BA
    Cancer Res; 1997 Mar; 57(5):900-6. PubMed ID: 9041192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model.
    Foster BA; Gingrich JR; Kwon ED; Madias C; Greenberg NM
    Cancer Res; 1997 Aug; 57(16):3325-30. PubMed ID: 9269988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts.
    Fizazi K; Yang J; Peleg S; Sikes CR; Kreimann EL; Daliani D; Olive M; Raymond KA; Janus TJ; Logothetis CJ; Karsenty G; Navone NM
    Clin Cancer Res; 2003 Jul; 9(7):2587-97. PubMed ID: 12855635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of mRNA for the insulin-like growth factors and their receptors in human preimplantation embryos.
    Lighten AD; Hardy K; Winston RM; Moore GE
    Mol Reprod Dev; 1997 Jun; 47(2):134-9. PubMed ID: 9136113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interrelationships between dietary restriction, the IGF-I axis, and expression of vascular endothelial growth factor by prostate adenocarcinoma in rats.
    Powolny AA; Wang S; Carlton PS; Hoot DR; Clinton SK
    Mol Carcinog; 2008 Jun; 47(6):458-65. PubMed ID: 18058807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.
    Haram KM; Peltier HJ; Lu B; Bhasin M; Otu HH; Choy B; Regan M; Libermann TA; Latham GJ; Sanda MG; Arredouani MS
    Prostate; 2008 Oct; 68(14):1517-30. PubMed ID: 18668517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors.
    Goya M; Miyamoto S; Nagai K; Ohki Y; Nakamura K; Shitara K; Maeda H; Sangai T; Kodama K; Endoh Y; Ishii G; Hasebe T; Yonou H; Hatano T; Ogawa Y; Ochiai A
    Cancer Res; 2004 Sep; 64(17):6252-8. PubMed ID: 15342412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential expression of specific FGF ligand and receptor isoforms during angiogenesis associated with prostate cancer progression.
    Huss WJ; Barrios RJ; Foster BA; Greenberg NM
    Prostate; 2003 Jan; 54(1):8-16. PubMed ID: 12481250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) as a model to study effects of castration therapy.
    Wikström P; Lindahl C; Bergh A
    Prostate; 2005 Feb; 62(2):148-64. PubMed ID: 15389804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of Nkx3.1 expression in the transgenic adenocarcinoma of mouse prostate model.
    Bethel CR; Bieberich CJ
    Prostate; 2007 Dec; 67(16):1740-50. PubMed ID: 17929276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-expression of messenger ribonucleic acids encoding IGF-I, IGF-II, type I and II IGF receptors and IGF-binding proteins (IGFBP-1 to -6) during follicular development in the ovary of seasonally anoestrous ewes.
    Hastie PM; Onagbesan OM; Haresign W
    Anim Reprod Sci; 2004 Aug; 84(1-2):93-105. PubMed ID: 15302390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay of insulin-like growth factor-II, insulin-like growth factor-I, insulin-like growth factor-I receptor, COX-2, and matrix metalloproteinase-7, play key roles in the early stage of colorectal carcinogenesis.
    Nosho K; Yamamoto H; Taniguchi H; Adachi Y; Yoshida Y; Arimura Y; Endo T; Hinoda Y; Imai K
    Clin Cancer Res; 2004 Dec; 10(23):7950-7. PubMed ID: 15585629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-invasive bioluminescent detection of prostate cancer growth and metastasis in a bigenic transgenic mouse model.
    Hsieh CL; Xie Z; Yu J; Martin WD; Datta MW; Wu GJ; Chung LW
    Prostate; 2007 May; 67(7):685-91. PubMed ID: 17342752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of proliferation of PC-3 human prostate cancer by antagonists of growth hormone-releasing hormone: lack of correlation with the levels of serum IGF-I and expression of tumoral IGF-II and vascular endothelial growth factor.
    Plonowski A; Schally AV; Letsch M; Krupa M; Hebert F; Busto R; Groot K; Varga JL
    Prostate; 2002 Aug; 52(3):173-82. PubMed ID: 12111694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of insulin-like growth factor-1 receptor in local and metastatic prostate cancer.
    Ryan CJ; Haqq CM; Simko J; Nonaka DF; Chan JM; Weinberg V; Small EJ; Goldfine ID
    Urol Oncol; 2007; 25(2):134-40. PubMed ID: 17349528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Castration rapidly decreases local insulin-like growth factor-1 levels and inhibits its effects in the ventral prostate in mice.
    Ohlson N; Bergh A; Persson ML; Wikström P
    Prostate; 2006 Dec; 66(16):1687-97. PubMed ID: 16998818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broadening of transgenic adenocarcinoma of the mouse prostate (TRAMP) model to represent late stage androgen depletion independent cancer.
    Jeet V; Ow K; Doherty E; Curley B; Russell PJ; Khatri A
    Prostate; 2008 Apr; 68(5):548-62. PubMed ID: 18247402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of the androgen receptor pathway during progression of prostate cancer.
    Hendriksen PJ; Dits NF; Kokame K; Veldhoven A; van Weerden WM; Bangma CH; Trapman J; Jenster G
    Cancer Res; 2006 May; 66(10):5012-20. PubMed ID: 16707422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells.
    Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A
    Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.