These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 10232668)

  • 1. Use of ridge regression for improved estimation of kinetic constants from PET data.
    O'Sullivan F; Saha A
    IEEE Trans Med Imaging; 1999 Feb; 18(2):115-25. PubMed ID: 10232668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic
    Ben Bouallègue F; Vauchot F; Mariano-Goulart D
    Med Phys; 2019 Mar; 46(3):1260-1271. PubMed ID: 30592540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Population" approach improves parameter estimation of kinetic models from dynamic PET data.
    Bertoldo A; Sparacino G; Cobelli C
    IEEE Trans Med Imaging; 2004 Mar; 23(3):297-306. PubMed ID: 15027522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of measurement errors in the plasma radioactivity curve on parameter estimation in positron emission tomography.
    Chen KW; Huang SC; Yu DC
    Phys Med Biol; 1991 Sep; 36(9):1183-200. PubMed ID: 1946602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer simulation study on the input function sampling schedules in tracer kinetic modeling with positron emission tomography (PET).
    Feng D; Wang X; Yan H
    Comput Methods Programs Biomed; 1994 Nov; 45(3):175-86. PubMed ID: 7705075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracer kinetic modeling of 11C-acetate applied in the liver with positron emission tomography.
    Chen S; Ho C; Feng D; Chi Z
    IEEE Trans Med Imaging; 2004 Apr; 23(4):426-32. PubMed ID: 15084068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved parametric image generation using spatial-temporal analysis of dynamic PET studies.
    Zhou Y; Huang SC; Bergsneider M; Wong DF
    Neuroimage; 2002 Mar; 15(3):697-707. PubMed ID: 11848713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal image sampling schedule for both image-derived input and output functions in PET cardiac studies.
    Li X; Feng D; Chen K
    IEEE Trans Med Imaging; 2000 Mar; 19(3):233-42. PubMed ID: 10875707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic parameter estimation from compartment models using a genetic algorithm.
    Murase K; Mochizuki T; Kikuchi T; Ikezoe J
    Nucl Med Commun; 1999 Oct; 20(10):925-32. PubMed ID: 10528298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer simulation study on the effects of input function measurement noise in tracer kinetic modeling with positron emission tomography (PET).
    Feng D; Wang X
    Comput Biol Med; 1993 Jan; 23(1):57-68. PubMed ID: 8467639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of tracer blood measurement noise on glucose metabolic rate estimation.
    Feng D; Wang X; Fulton R; Hutton B; Morris J
    Biomed Sci Instrum; 1991; 27():43-8. PubMed ID: 2065176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of component and parameter distributions in spectral analysis.
    Turkheimer F; Sokoloff L; Bertoldo A; Lucignani G; Reivich M; Jaggi JL; Schmidt K
    J Cereb Blood Flow Metab; 1998 Nov; 18(11):1211-22. PubMed ID: 9809510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved simultaneous estimation of tracer kinetic models with artificial immune network based optimization method.
    Liu L; Ding H; Huang HB
    Appl Radiat Isot; 2016 Jan; 107():71-76. PubMed ID: 26433131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic dynamic model for estimation of rate constants and their variances from noisy and heterogeneous PET measurements.
    Niemi J; Ruotsalainen U; Saarinen A; Ruohonen K
    Bull Math Biol; 2007 Feb; 69(2):585-604. PubMed ID: 16917679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of kinetic parameter estimation methods in dynamic FDG-PET studies.
    Dai X; Chen Z; Tian J
    Nucl Med Commun; 2011 Jan; 32(1):4-16. PubMed ID: 21166088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Bayesian analysis of compartmental kinetic models in medical imaging.
    Sitek A; Li Q; El Fakhri G; Alpert NM
    Phys Med; 2016 Oct; 32(10):1252-1258. PubMed ID: 27692754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography.
    Feng D; Huang SC; Wang X
    Int J Biomed Comput; 1993 Mar; 32(2):95-110. PubMed ID: 8449593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of kinetic parameters in graphical analysis of PET imaging data.
    Ogden RT
    Stat Med; 2003 Nov; 22(22):3557-68. PubMed ID: 14601019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET.
    Hawkins RA; Phelps ME; Huang SC
    J Cereb Blood Flow Metab; 1986 Apr; 6(2):170-83. PubMed ID: 3485641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies.
    Torizuka T; Zasadny KR; Recker B; Wahl RL
    Radiology; 1998 Jun; 207(3):767-74. PubMed ID: 9609902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.