These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10232818)

  • 21. Combining Nordtest method and bootstrap resampling for measurement uncertainty estimation of hematology analytes in a medical laboratory.
    Cui M; Xu L; Wang H; Ju S; Xu S; Jing R
    Clin Biochem; 2017 Dec; 50(18):1067-1072. PubMed ID: 28928006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of two simple methods for estimation of thyroidal 131I kinetics for dosimetry-based treatment of Graves' disease.
    Traino AC; Xhafa B
    Med Phys; 2009 Apr; 36(4):1212-8. PubMed ID: 19472628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of variability and uncertainty for censored data sets and application to air toxic emission factors.
    Zhao Y; Frey HC
    Risk Anal; 2004 Aug; 24(4):1019-34. PubMed ID: 15357825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. II: A bootstrap modification of standard two-stage (STS) method for phase I trial.
    Yafune A; Ishiguro M
    Stat Med; 1999 Mar; 18(5):601-12. PubMed ID: 10209814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.
    Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O
    Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers.
    Stayner L; Vrijheid M; Cardis E; Stram DO; Deltour I; Gilbert SJ; Howe G
    Radiat Res; 2007 Dec; 168(6):757-63. PubMed ID: 18088178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measured and Monte Carlo calculated K(Q) factors: accuracy and comparison.
    Muir BR; McEwen MR; Rogers DW
    Med Phys; 2011 Aug; 38(8):4600-9. PubMed ID: 21928633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of parameters of dose-volume models and their confidence limits.
    van Luijk P; Delvigne TC; Schilstra C; Schippers JM
    Phys Med Biol; 2003 Jul; 48(13):1863-84. PubMed ID: 12884921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GATE based Monte Carlo simulation of planar scintigraphy to estimate the nodular dose in radioiodine therapy for autonomous thyroid adenoma.
    Hammes J; Pietrzyk U; Schmidt M; Schicha H; Eschner W
    Z Med Phys; 2011 Dec; 21(4):290-300. PubMed ID: 21983024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy.
    Bakhshandeh M; Hashemi B; Mahdavi SR; Nikoofar A; Vasheghani M; Kazemnejad A
    Int J Radiat Oncol Biol Phys; 2013 Feb; 85(2):514-21. PubMed ID: 22583606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliability of dose volume constraint inference from clinical data.
    Lutz CM; Møller DS; Hoffmann L; Knap MM; Alber M
    Phys Med Biol; 2017 Apr; 62(8):3250-3262. PubMed ID: 28350545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dosimetry of radioiodine for embryo and fetus.
    Berkovski V; Eckerman KF; Phipps AW; Nosske D
    Radiat Prot Dosimetry; 2003; 105(1-4):265-8. PubMed ID: 14526968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graves' disease radioiodine-therapy: choosing target absorbed doses for therapy planning.
    Willegaignon J; Sapienza MT; Coura-Filho GB; Watanabe T; Traino AC; Buchpiguel CA
    Med Phys; 2014 Jan; 41(1):012503. PubMed ID: 24387527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional personalized Monte Carlo dosimetry in 90Y resin microspheres therapy of hepatic metastases: nontumoral liver and lungs radiation protection considerations and treatment planning optimization.
    Petitguillaume A; Bernardini M; Hadid L; de Labriolle-Vaylet C; Franck D; Desbrée A
    J Nucl Med; 2014 Mar; 55(3):405-13. PubMed ID: 24504053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of three methods for calculating confidence intervals for the benchmark dose.
    Moerbeek M; Piersma AH; Slob W
    Risk Anal; 2004 Feb; 24(1):31-40. PubMed ID: 15027998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.
    Andreo P
    Phys Med Biol; 2015 Jan; 60(1):309-37. PubMed ID: 25503312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning.
    Chetty IJ; Rosu M; Kessler ML; Fraass BA; Ten Haken RK; Kong FM; McShan DL
    Int J Radiat Oncol Biol Phys; 2006 Jul; 65(4):1249-59. PubMed ID: 16798417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison between effective doses for voxel-based and stylized exposure models from photon and electron irradiation.
    Kramer R; Khoury HJ; Vieira JW
    Phys Med Biol; 2005 Nov; 50(21):5105-26. PubMed ID: 16237244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system.
    Wang L; Ding GX
    J Appl Clin Med Phys; 2018 Jul; 19(4):319-324. PubMed ID: 29896876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The failure of four bootstrap procedures for estimating confidence intervals for predicted-to-expected ratios for hospital profiling.
    Austin PC
    BMC Med Res Methodol; 2022 Oct; 22(1):271. PubMed ID: 36241973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.