These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 10233077)

  • 1. Lipid composition and the lateral pressure profile in bilayers.
    Cantor RS
    Biophys J; 1999 May; 76(5):2625-39. PubMed ID: 10233077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic deformation and failure of lipid bilayer membranes containing cholesterol.
    Needham D; Nunn RS
    Biophys J; 1990 Oct; 58(4):997-1009. PubMed ID: 2249000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a mechanism by which omega-3 polyunsaturated lipids may affect membrane protein function.
    Carrillo-Tripp M; Feller SE
    Biochemistry; 2005 Aug; 44(30):10164-9. PubMed ID: 16042393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics.
    Cantor RS
    Biophys J; 2001 May; 80(5):2284-97. PubMed ID: 11325730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chain length and unsaturation on elasticity of lipid bilayers.
    Rawicz W; Olbrich KC; McIntosh T; Needham D; Evans E
    Biophys J; 2000 Jul; 79(1):328-39. PubMed ID: 10866959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sterol type on lateral pressure profiles of lipid membranes affecting membrane protein functionality: Comparison between cholesterol, desmosterol, 7-dehydrocholesterol and ketosterol.
    Samuli Ollila OH; Róg T; Karttunen M; Vattulainen I
    J Struct Biol; 2007 Aug; 159(2):311-23. PubMed ID: 17369050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria.
    Cantor RS
    Chem Phys Lipids; 1999 Aug; 101(1):45-56. PubMed ID: 10810924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch.
    Fattal DR; Ben-Shaul A
    Biophys J; 1993 Nov; 65(5):1795-809. PubMed ID: 8298013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes.
    Nezil FA; Bloom M
    Biophys J; 1992 May; 61(5):1176-83. PubMed ID: 1600079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical changes induced by xenon on phospholipid bilayers.
    Booker RD; Sum AK
    Biochim Biophys Acta; 2013 May; 1828(5):1347-56. PubMed ID: 23376329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting and capillary condensation as means of protein organization in membranes.
    Gil T; Sabra MC; Ipsen JH; Mouritsen OG
    Biophys J; 1997 Oct; 73(4):1728-41. PubMed ID: 9336169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations.
    Rosetti C; Pastorino C
    J Phys Chem B; 2012 Mar; 116(11):3525-37. PubMed ID: 22369354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers.
    Cristian L; Lear JD; DeGrado WF
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14772-7. PubMed ID: 14657351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of 1-alkanols and external pressure on the lateral pressure profiles of lipid bilayers.
    Griepernau B; Böckmann RA
    Biophys J; 2008 Dec; 95(12):5766-78. PubMed ID: 18849412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes.
    Bagatolli LA; Ipsen JH; Simonsen AC; Mouritsen OG
    Prog Lipid Res; 2010 Oct; 49(4):378-89. PubMed ID: 20478336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
    Harroun TA; Heller WT; Weiss TM; Yang L; Huang HW
    Biophys J; 1999 Jun; 76(6):3176-85. PubMed ID: 10354442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying Lateral Inhomogeneity of Cholesterol-Containing Membranes.
    Díaz-Tejada C; Ariz-Extreme I; Awasthi N; Hub JS
    J Phys Chem Lett; 2015 Dec; 6(23):4799-803. PubMed ID: 26575955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lateral pressure profile in membranes: a physical mechanism of general anesthesia.
    Cantor RS
    Biochemistry; 1997 Mar; 36(9):2339-44. PubMed ID: 9054538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium behavior in supported lipid membranes containing cholesterol.
    Stottrup BL; Veatch SL; Keller SL
    Biophys J; 2004 May; 86(5):2942-50. PubMed ID: 15111410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.